环形石子合并(区间DP)

题目描述

将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆。

规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分。

请编写一个程序,读入堆数 n 及每堆的石子数,并进行如下计算:

选择一种合并石子的方案,使得做 n−1 次合并得分总和最大。
选择一种合并石子的方案,使得做 n−1 次合并得分总和最小。
输入格式
第一行包含整数 n,表示共有 n 堆石子。

第二行包含 n 个整数,分别表示每堆石子的数量。

输出格式

输出共两行:

第一行为合并得分总和最小值,

第二行为合并得分总和最大值。

数据范围

1≤n≤200

输入样例:

4
4 5 9 4

输出样例:

43
54

思路: 求一个环形的石子合并的最小值,和最大值, 两部分可以一起做, 我们发现, 将n环形堆石子合并,最终合并成一堆石子, 我们合并了n - 1次 , 而n堆环形石子中有n段空隙, 即肯定存在两个石子之间的空隙没有被合并, 我们可以枚举这个断点, 但是时间复杂度就会变成 n 3 n^3 n3, 会TLE, 那我们直接考虑将俩段完全相同的石子接到一起, 然后直接求出长度为n的环形石子的最值,时间复杂度降到了 ( n + 1 ) 2 (n+1)^2 (n+1)2

代码:

#include <iostream>//学习DP让我懂得了不少知识呢, 差不多明白了为什么算法好的同学为什么DP都厉害了。>
#include <cstring>

using namespace std;

const int N = 410, INF = 0x3f3f3f3f;

int w[N], s[N], f[N][N], g[N][N];

int main()
{
    int n; cin >> n;
    
    for(int i = 1; i <= n; i ++)
    {
        cin >> w[i];
        w[i + n] = w[i];
    }
    for(int i = 1; i <= 2 * n; i ++) s[i] = s[i - 1] + w[i];
    memset(f, 0x3f, sizeof f);
    memset(g, 0, sizeof g);

    for(int len = 1; len <= n; len ++)
    {
        for(int l = 1; l + len - 1 <= 2 * n; l ++)
        {
            int r = l + len - 1;
            if(len == 1) g[l][r] = 0, f[l][r] = 0;
            else 
            {
                for(int k = l; k < r; k ++)
                {
                    f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
                    g[l][r] = max(g[l][r], g[l][k] + g[k + 1][r] + s[r] - s[l - 1]);
                }
            }
        }
    }
    
    int maxv = 0, minv = INF;
    for(int i = 1; i <= n; i ++)
    {
        maxv = max(g[i][i + n - 1], maxv);
        minv = min(f[i][i + n - 1], minv);
    }
    
    cout << minv << '\n' << maxv << endl;
    
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
环形石子合并问题可以使用动态规划来解决。下面是解决该问题的动态规划思路: 1. 定义状态:设dp[i][j]表示合并第i堆到第j堆石子所能得到的最小得分和最大得分。 2. 状态转移方程:对于dp[i][j],可以考虑最后一次合并的位置k,其中i <= k < j。假设最后一次合并的位置是k,则有以下两种情况: - 合并第i堆到第k堆和合并第k+1堆到第j堆,得到的得分为dp[i][k] + dp[k+1][j] + sum[i][j],其中sum[i][j]表示第i堆到第j堆石子的总数。 - 合并第i堆到第j堆,得到的得分为dp[i][j-1] + sum[i][j]。 综上所述,状态转移方程为: dp[i][j] = min(dp[i][k] + dp[k+1][j] + sum[i][j]),其中i <= k < j dp[i][j] = max(dp[i][j-1] + sum[i][j]) 3. 边界条件:当i == j时,只有一堆石子,得分为0。 4. 计算顺序:根据状态转移方程,可以先计算小区间dp值,再逐步扩大区间,最终计算出dp[n]的值。 下面是一个使用动态规划解决环形石子合并问题的示例代码: ```python def mergeStones(stones): n = len(stones) dp = [[0] * (n+1) for _ in range(n+1)] sum = [0] * (n+1) for i in range(1, n+1): sum[i] = sum[i-1] + stones[i-1] for length in range(2, n+1): for i in range(1, n-length+2): j = i + length - 1 dp[i][j] = float('inf') for k in range(i, j): dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j] + sum[j] - sum[i-1]) return dp[1][n] stones = [4, 1, 2, 3] min_score = mergeStones(stones) max_score = mergeStones(stones) print("最小得分:", min_score) print("最大得分:", max_score) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值