题目: 给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为节点合并后的新值,否则不为 NULL 的节点将直接作为新二叉树的节点。
示例:
思路分析–递归
一、合并两棵树时,其中不但涉及到结点的更新,也涉及到链接的更新,最简便的方法就是选定一棵主树,让另外一棵树归并到主树上。
二、递归的下沉阶段在两棵树中不断搜索,上浮阶段不断更新结点左右子链接,然后更新结点的值。
三、递归放回值为更新完成的结点,所以更新链接的code为t1.left = mergeTrees(t1.left, t2.left); 以及 t1.right = mergeTrees(t1.right, t2.tight); ,参数存在的意义显然就是,归并的结点是两树中位置对应位置的结点。
四、递归结束的条件:
1.t1 == null && t2 == null,当前位置都是空结点,不需要归并,直接返回null。
2.t1 == null || t2 == null,都意味着一棵树结点不存在,故直接返回节点存在的那棵树即可。
算法复杂度分析:
1.时间复杂度O(N):对于N个结点需要遍历一次且仅一次。
2.空间复杂度O(h)-O(N):就是函数调用栈的情况,其中h为较高的树的高度;在最坏的情况下,则会递归N层,故需要O(N)。
Code–递归
class Solution{
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
if (t1 == null && t2 == null) {
return null;
}
if (t1 == null) {
return t2;
}
if (t2 == null) {
return t1;
}
t1.left = mergeTrees(t1.left, t2.left);
t1.right = mergeTrees(t1.right, t2.right);
t1.val = t1.val + t2.val;
return t1;
}
}