【非参数统计03】两独立样本的位置和尺度推断:Brown-Mood中位数检验、Wilcoxon-Mann-Whitney秩和检验

本文深入探讨了两独立样本的位置和尺度推断,包括Brown-Mood中位数检验和Wilcoxon-Mann-Whitney秩和检验。Brown-Mood检验关注中位数,而Wilcoxon检验考虑了数据的符号信息,适用于不对称分布。文章详细阐述了检验的统计量、分布及大样本近似,并提供了点估计和区间估计的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


这一个系列的笔记和整理希望可以帮助到正在学习非参数统计的同学。我会慢慢更新各个章节的内容。

3 两独立样本数据的位置和尺度推断

第二章我们主要考虑的是单一样本所属总体的推断,如总体位置估计。这一章是关于两个不同样本所属总体的位置参数或者尺度参数对比。

一般性的,
X 1 , X 2 , . . . , X m ∼ i . i . d . F 1 ( x − μ 1 σ 1 ) , Y 1 , Y 2 , . . . , Y n ∼ i . i . d . F 1 ( x − μ 2 σ 2 ) X_1,X_2,...,X_m \stackrel{i.i.d.}{\sim} F_1(\frac{x-\mu_1}{\sigma_1}),Y_1,Y_2,...,Y_n \stackrel{i.i.d.}{\sim} F_1(\frac{x-\mu_2}{\sigma_2}) X1,X2,...,Xmi.i.d.F1(σ1xμ1),Y1,Y2,...,Yni.i.d.F1(σ2xμ2)
在只考虑位置参数问题的时候可以简化为
X 1 , X 2 , . . . , X m ∼ i . i . d . F ( x ) , Y 1 , Y 2 , . . . , Y n ∼ i . i . d . F ( x − μ ) X_1,X_2,...,X_m \stackrel{i.i.d.}{\sim} F(x),Y_1,Y_2,...,Y_n \stackrel{i.i.d.}{\sim} F(x-\mu) X1,X2,...,Xmi.i.d.F(x),Y1,Y2,...,Yni.i.d.F(xμ)
关于位置参数的检验问题是
H 0 : μ = 0 ↔ H 1 : μ ≠ 0 H_0: \mu=0\leftrightarrow H_1:\mu \neq 0 H0:μ=0H1:μ=0
这实际上可以理解为两个样本的中位数位置比较。3.1-3.2讨论这一问题

致于尺度参数问题,
H 0 : σ 1 = σ 2 ↔ H 1 : σ 1 ≠ σ 2 H_0: \sigma_1=\sigma_2 \leftrightarrow H_1:\sigma_1\neq \sigma_2 H0:σ1=σ2H1:σ1=σ2
3.3-3.4讨论这一问题

3.1 Brown-Mood 中位数检验

H 0 : m e d X = m e d Y ↔ H 1 : m e d X ≠ m e d Y H_0: med_X=med_Y \leftrightarrow H_1:med_X \neq med_Y H0:medX=medYH1:medX=medY
如果 H 0 H_0 H0成立,两样本的混合中位数 m e d X Y med_{XY} medXY也可以均匀地分隔开 { X i } i = 1 m , { Y i } i = 1 n \{X_i\}_{i=1}^m, \{Y_i\}_{i=1}^n { Xi}i=1m,{ Yi}i=1n两组样本。

检验关注 A A A的数值, A A A的意义是 { X i } i = 1 m \{X_i\}_{i=1}^m { Xi}i=1m混合中位数右侧的个数

  • 如果 A A A很大,表示 { X i } i = 1 m \{X_i\}_{i=1}^m { Xi}i=1m的中位数明显大于 { Y i } i = 1 n \{Y_i\}_{i=1}^n { Yi}i=1n的,
  • 如果 A A A很小,表示 { Y i } i = 1 n \{Y_i\}_{i=1}^n { Yi}i=1n的中位数显著大于 { X i } i = 1 m \{X_i\}_{i=1}^m { Xi}i=1m的。

3.1.1 精确分布

先补齐一个列联表,明确符号

X Y sum
> M X Y >M_{XY} >MXY A B t
< M X Y <M_{XY} <MXY C D (m+n)-(A+B)
sum m n m+n

原假设成立条件下, A A A服从超几何分布,精确概率如下
P ( A = k ) = ( m k ) 0. 5 m ( n t − k ) 0. 5 n ( m + n t ) 0. 5 m + n = ( m k ) ( n t − k ) ( m + n t ) P(A=k)=\frac{\tbinom{m}{k}0.5^{m} \tbinom{n}{t-k}0.5^{n}}{\tbinom{m+n}{t}0.5^{m+n}} = \frac{\tbinom{m}{k} \tbinom{n}{t-k}}{\tbinom{m+n}{t}} P(A=k)=(tm+n)0.5m+n(km)0.5m(tkn)0.5n=(tm+n)(km)(tkn)
其分母表示从 m + n m+n m+n个数中一共选了 t t t个放在混合中位数的右侧,着 t t t个的成份显然是分为从 m m m X i X_i Xi中选 k k k个, n n n Y i Y_i Yi<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值