机器学习论文阅读笔记摘录,主动学习Active Learning,迁移学习Transfer Learning,差分隐私Differential Privacy,模型攻击Model Attack

这篇博客详细记录了主动学习(Active Learning)和迁移学习(Transfer Learning)的研究进展,包括如何让网络预测训练损失选择样本,以及经典DANN等方法。同时,探讨了差分隐私(Differential Privacy)在机器学习中的应用,如DANN的隐私保护网络架构,以及基于差分隐私的线性回归和逻辑回归分析。还提及了模型攻击(Model Inversion Attack)的相关研究,如利用信心信息进行的模型反向攻击及其对策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值