关于 欧拉回路的总结 UVA 10129题目 P1341无序字母

2 篇文章 0 订阅
1 篇文章 0 订阅
本文总结了欧拉回路和欧拉路径的概念,强调了判断条件,如无向图中所有点的度数为偶数,有向图中每个点的出度等于入度。对于欧拉路径,特殊情况是有两个点的度数为奇数。此外,介绍了算法实现,包括无向图的连通性和点的度数检查,以及有向图中考虑图的连通性和点的出度与入度差异。
摘要由CSDN通过智能技术生成

首先来总结一下做欧拉回路,欧拉路径问题的对策
欧拉回路;所有边都经过且只经过一次,最后一个点回到起点
欧拉通路:所有边都经过且只经过一次,最后一个点任意不能是起点
判断欧拉回路的办法:
首先所有图要联通
无向图:每一个点的度都为偶数即可
有向图:每一个点的出度与入度即可
判断欧拉路径的方法:
无向图:有俩个点的度数为奇数,有从其中一个奇数顶点到另一个的奇数顶点
有向图:有俩个点各自的出度与入度分别相差一,从出度比入度小一的点开始到另一个点结束。
从算法上讨论欧拉路径(如果是欧拉回路就一定是路径)
1.无向图首先判断是否连通,其次判断看各点的度
2.有向图首先存图时将图按无向图考虑,看是否连通,其次判断各个点的出度和入度

// 单词.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//

#include <iostream>
#include<vector>
#include<queue>
#include<string>
#include<cstring>
using namespace std;
const int maxn = 30;
int graph[maxn][maxn];
string w;
int in[maxn];
int out[maxn];
bool vis[maxn];
int from, to;
int n;

void dfs(int u)
{
	vis[u] = 0;
	for (int i = 1;i <= 26;i++)
	{
		if (graph[u][i]&&vis[i])
		{
			dfs(i);
		}
	}
}
void init()
{
	memset(in, 0, sizeof(in));
	memset(out, 0, sizeof(out));
	memset(graph, 0, sizeof(graph));
	memset(vis, false, sizeof(vis));
}
bool solve(int m)
{
	int in1 = 0, out1 = 0;
	for (int i = 0;i < m;i++)
	{//有向图看成无向图判断连通关系
		cin >> w;
		from = w[0] - 'a' + 1;
		to = w[w.length() - 1] - 'a' + 1;
		graph[from][to]++, graph[to][from]++;
		vis[from] = true;
		vis[to] = true;
		out[from]++;
		in[to]++;
	}
	dfs(from);
	for (int i = 1;i <= 26;i++)
	{
		if (vis[i])
		{
			return false;
		}
		if (in[i] != out[i])
		{//从定义考虑是否有欧拉回路
			if (in[i] - out[i] == 1)in1++;
			else if (out[i] - in[i] == 1)out1++;
			else
			{
				return false;
			}
		}
	}
	if ((in1 == 1 && out1 == 1) || (in1 == 0 && out1 == 0))
	{
		return true;
	}
	else
	{
		return false;
	}
}
int main()
{
	cin >> n;
	while (n--)
	{
		init();
		int m;
		cin >> m;
		if (solve(m))
		{
			cout << "Ordering is possible." << endl;
		}
		else
		{
			cout << "The door cannot be opened." << endl;
		}
	}
}
这是判断无向图的题目
```cpp
#include <iostream>
#include<cstring>
#include<vector>
using namespace std;
int degree[130];
int father[130];
int graph[130][130];
char a[2];
char ans[1330];int n;
int find(int x)
{
	if (father[x] != x)
	{
		father[x] = find(father[x]);
	}
	return father[x];
}
void dfs(int x)
{
	for (int i = 64;i <= 125;i++)
	{
		if (graph[x][i])
		{
			graph[x][i] = graph[i][x] = 0;
			dfs(i);
		}
	}
	ans[n--] = x;
}
int main()
{
	cin >> n;
	for (int i = 64;i <= 125;i++)
	{
		father[i] = i;
	}
	for (int i = 0;i < n;i++)
	{
		cin >> a;
		graph[a[0]][a[1]] = graph[a[1]][a[0]] = 1;
		degree[a[0]]++;
		degree[a[1]]++;
		int xx = find(a[0]);
		int yy = find(a[1]);
		father[xx] = yy;
	}
	int number = 0;
	for (int i = 64;i <= 125;i++)
	{
		if (father[i] == i && degree[i])number++;
	}
	if (number != 1) {
		cout << "No Solution" << endl;return 0;
	}
	int head = 0;
	int cnt = 0;
	for (int i = 64;i <= 125;i++)
	{
		if (degree[i] & 1)
		{
			if(head==0)head = i;
			cnt++;
		}
	}
	if (cnt&&cnt != 2) { cout << "No Solution" << endl;return 0; }
	if (head == 0)
	{
		for (int i = 64;i <= 125;i++)
		{
			if (degree[i])
			{
				head = i;
				break;
			}
		}
	}
	dfs(head);
	cout << ans;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值