Spark Streaming使用(Python版)

本文介绍了如何使用PySpark实现SparkStreaming的WordCount,并通过updateStateByKey进行历史信息统计。首先讲解了SparkStreaming的安装、基本原理和DStream概念,接着通过代码展示WordCount的实现过程,最后探讨了如何利用updateStateByKey和checkpoint功能来处理流数据的历史统计问题。

Spark Streaming使用(Python版)

本文使用的是PySpark,但如果用scala本质思想是一致的,只是语言不同。参考的是子雨老师的教程——子雨大数据之Spark入门教程(Python版)

Spark安装

PySpark版本参考

Spark2.1.0+入门:Spark的安装和使用(Python版)

scala版本参考

hadoop2.7.7+spark集群搭建

Spark Streaming简介

Spark Streaming是Spark的核心组件之一,为Spark提供了可拓展、高吞吐、容错的流计算能力。如下图所示,Spark Streaming可整合多种输入数据源,如Kafka、Flume、HDFS,甚至是普通的TCP套接字。经处理后的数据可存储至文件系统、数据库,或显示在仪表盘里。

Spark Streaming的基本原理是将实时输入数据流以时间片(秒级)为单位进行拆分,然后经Spark引擎以类似批处理的方式处理每个时间片数据,执行流程如下图所示。

Spark Streaming最主要的抽象是DStream(Discretized Stream,离散化数据流),表示连续不断的数据流。在内部实现上,Spark Streaming的输入数据按照时间片(如1秒)分成一段一段的DStream,每一段数据转换为Spark中的RDD,并且对DStream的操作都最终转变为对相应的RDD的操作。例如,下图展示了进行单词统计时,每个时间片的数据(存储句子的RDD)经flatMap操作,生成了存储单词的RDD。整个流式计算可根据业务的需求对这些中间的结果进一步处理,或者存储到外部设备中。

实现WordCount

编写程序

此处仅介绍文件流的输入来源,其它如套接字等可参见子雨老师的教程。

首先创建一个SparkContext,设置使用2个逻辑CPU的线程来本地化运行Spark。

from pyspark import SparkContext, SparkConf
from pyspark.streaming import StreamingContext
conf = SparkConf()
conf.setAppName('TestDStream')
conf.setMaster('local[2]')
sc = SparkContext(conf
### 使用 Docker 部署 Spark Streaming 应用程序 为了使用 Docker 部署 Spark Streaming 应用程序,通常会遵循一系列特定的操作流程。这不仅涉及创建适合 Spark 运行的容器环境,还包括确保应用程序能够顺利启动并执行流处理任务。 #### 构建 Spark 流程的应用镜像 首先,需要准备一个包含 Spark 和所有必要依赖项的 Docker 映像。可以通过编写 `Dockerfile` 来完成此操作,在其中指定基础映像以及安装所需的软件包和服务: ```dockerfile FROM bitnami/spark:latest COPY ./app /opt/spark-app WORKDIR /opt/spark-app RUN pip install --no-cache-dir -r requirements.txt CMD ["bash", "start-streaming.sh"] ``` 这段脚本假设存在名为 `requirements.txt` 的文件列出了 Python 依赖项,并且有一个 shell 脚本来初始化 Spark Streaming 程序[^3]。 #### 编写 Compose 文件配置服务 接着,通过定义 `docker-compose.yml` 文件来设置整个系统的架构,包括但不限于 Zookeeper、Kafka(作为消息队列)、Spark Master/Worker 节点等组件间的交互方式: ```yaml version: '3' services: zookeeper: image: wurstmeister/zookeeper ports: - "2181:2181" kafka: image: wurstmeister/kafka depends_on: - zookeeper environment: KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181 KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://kafka:9092 ports: - "9092:9092" spark-master: image: bitnami/spark:latest command: bin/spark-class org.apache.spark.deploy.master.Master expose: - "7077" - "8080" spark-worker: image: bitnami/spark:latest depends_on: - spark-master command: bin/spark-class org.apache.spark.deploy.worker.Worker spark://spark-master:7077 expose: - "8081" app: build: . links: - kafka:kafka - spark-master:master volumes: - .:/opt/spark-app entrypoint: ["./run_spark_streaming_job.sh"] ``` 上述 YAML 定义了一个完整的微服务体系结构,涵盖了从数据摄入到处理再到存储的关键环节[^4]。 #### 启动集群与提交作业 最后一步就是实际启动这些服务并将编译好的 Spark Streaming jar 提交给 master 节点去运行。借助于之前提到过的命令即可轻松做到这一点: ```shell docker-compose -f docker-compose-spark.yaml up -d ``` 一旦所有的服务都已成功启动,则可通过如下指令向正在运行中的 Spark 主节点提交新的计算任务[^1]: ```shell docker exec -it <container_name> /bin/bash spark-submit \ --class com.example.SparkStreamingApp \ --master spark://<spark_master_ip>:7077 \ /path/to/application.jar ``` 以上过程展示了如何利用 Docker 技术快速搭建起一套支持分布式流式数据分析能力的基础框架[^2]。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值