机器学习实战——k近邻算法

机器学习实战——k近邻算法

算法流程:
(1)收集数据
(2)准备数据:最好使用结构化数据
(3)分析数据
(4)训练数据:此步骤不适合k近邻
(5)测试数据:计算其错误率
(6)使用数据

(2)准备,python导入数据

# 导入科学计算包numpy
import numpy from *
# 导入运算符模块
import operator
#创建数据集和标签
def createDataset():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = ['A','A','B','B']
    return group,labels


########################################################
#k近邻算法
"""
实施knn分类算法的伪代码:
1.计算每一个点与样本点的距离
2.将距离按照从小到大排序
3.取前面k个距离最小的的点
4.这k个点在标签中出现的概率
5.取这k个点出现概率最大的标签为当前点的分类
"""
def classify0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0]      #第一维度的长度
    diffMat = tile(inX,(dataSetSize,1))-dataSet  #tile的作用是将intX向量补全为dataSetSize行矩阵
    sqDiffMat = diffMat**2
    sqDistance = sqDiffMat.sum(axis =1)      #每行相加和
    distances = sqDistance**0.5
    sortedDistIndicies = distances.argsort() #排序编号
    classCount = {}
    for i in range(k):
        voteIlabel= labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0)+1       #用于保存voteIlabel出现次数
    sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse = True)
    return sortedClassCount[0][0]
# 准备数据,利用python处理文本数据
def file2matrix(filename):
    fr = open(filename)
    arrayOLlines = fr.readlines()
    numberOfLines = len(arrayOLlines)
    returnMat = zeros((numberOfLines,3))
    classLabelVector = []
    index = 0
    for line in arrayOLlines:
        line = line.strip() #用于移除字符串首尾间指定字符
        listFromLine = line.split('\t') 
        returnMat[index,:] = listFromLine[0:3]
        classLabelVector.append(int(listFromLine[-1]))"""
样本主要包含了一下内容
1、每年获得的飞行常客里程数
2、玩视频游戏所耗时间百分比
3、每周消费的冰激凌公升数

"""
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))
plt.ylabel(u"玩视频游戏所消耗的时间")
plt.xlabel(u"每年获取飞行常客里程数")
plt.show()
        index += 1
    return returnMat,classLabelVector

#准备数据:归一化数据

def autoNorm(dataSet):
    minVals = dataSet.min(0)      #参数0使得函数可以从列中取得最小值
    maxVals = dataSet.max(0)
    ranges = maxVals-minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals,(m,1))
    normDataSet = normDataSet/tile(ranges,(m,1))
    return normDataSet,minVals,ranges

(3)分析数据

"""
样本主要包含了一下内容
1、每年获得的飞行常客里程数
2、玩视频游戏所耗时间百分比
3、每周消费的冰激凌公升数

"""
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.xlabel(u"玩视频游戏所消耗的时间")
plt.ylabel(u"每周消费的冰淇凌公升数")
plt.show()

在这里插入图片描述

"""
样本主要包含了一下内容
1、每年获得的飞行常客里程数
2、玩视频游戏所耗时间百分比
3、每周消费的冰激凌公升数

"""
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))
plt.ylabel(u"玩视频游戏所消耗的时间")
plt.xlabel(u"每年获取飞行常客里程数")
plt.show()

在这里插入图片描述
对比上述两幅图,我们可以知道使用第一和第二列属性(图二)比使用第二和第三列属性(图一)来展示数据的想过更好,能更加清晰第表示不同样本的分类区域

(5)测试数据:计算其错误率

def datingClassTest():
    hoRatio = 0.10
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
    normMat,ranges,minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    numTestVeces = int (m*hoRatio)
    errorCount = 0.0
    for i in range(numTestVeces):
        classifierResult = classify0(normMat[i,:],normMat[numTestVeces:m,:],
                                         datingLabels[numTestVeces:m],3)
        print("the classifier cam back with :%s,the real answer is %s"
                 %(classifierResult,datingLabels[i]))
        if(classifierResult != datingLabels[i]):
                errorCount +=1.0
    print ("the total error rate is :%f"%(errorCount/float(numTestVeces)))

结果:
在这里插入图片描述

(6)使用数据

def classifyPerson():
    resultList = ['not at all', 'in small doses', 'in large doses']
    percentTats = float(input('percentage of time spent playing video games?'))
    ffMiles = float(input('frequent flier miles earned per year?'))
    iceCream = float(input('liters of ice cream consumed per year?'))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMiles, percentTats, iceCream])
    classifierResult = classify0((inArr - minVals) / ranges, normMat, datingLabels, 3)
    print('you will probably like this person: ', resultList[classifierResult - 1])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>