kappa系数---学习笔记

Kappa系数是一种衡量分类问题中模型预测与实际分类一致性的指标,基于混淆矩阵计算,范围在-1到1之间。当数据不平衡时,模型可能偏向大类别,导致高准确率但小类别召回率低。Kappa系数能对此进行惩罚,值越低表示模型偏向性越强。因此,Kappa系数对于评估模型性能尤其是处理不平衡数据集时尤为重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. kappa系数是一个用于一致性检验的指标,也可用于衡量分类的效果
  2. 对于分类问题,所谓一致性就是模型预测结果和实际分类结果是否一致。kappa系数的计算是基于混淆矩阵的,取值为-1到1之间,通常大于0。
  3. 基于混淆矩阵的kappa系数计算公式如下:(参考:kappa系数简介 - 知乎 (zhihu.com)
  4. kappa系数计算示例:
  5. 实际分类问题中,各个类别的样本数量往往不太平衡,如果不调整不平衡的数据集,模型容易偏向大类别而放弃小类别,导致整体准确率很高,但部分类别完全不能被召回。所以需要惩罚模型的偏向性,根据kappa的计算公式,越不平衡的混淆矩阵,p_e越高,kappa值越低,正好能够给“偏向性”强的模型打低分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值