Kappa系数

Kappa系数用于一致性检验

也可以用于衡量分类精度

kappa系数的计算是基于混淆矩阵的

kappa计算结果为-1~1,但通常kappa是落在 0~1 间,可分为五组来表示不同级别的一致性:0.0~0.20极低的一致性(slight)、0.21~0.40一般的一致性(fair)、0.41~0.60 中等的一致性(moderate)、0.61~0.80 高度的一致性(substantial)和0.81~1几乎完全一致(almost perfect)。
引自百度百科Kappa系数

公式

k=pope1pe

po 是每一类正确分类的样本数量之和除以总样本数,也就是总体分类精度

假设每一类的真实样本个数分别为 a1,a2,...,aC

而预测出来的每一类的样本个数分别为 b1,b2,...,bC

总样本个数为n

则有: pe=a1×b1+a2×b2+...+aC×bCn×n

例子

这里写图片描述

上图就是个混淆矩阵

po=239+73+280664=0.8916

pe=261×276+103×93+300×295664×664=0.3883

因此:

k=0.89160.388310.3883=0.8228

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值