图论的基础

图的定义:图 G G G由顶点集 V V V和边集 E E E组成,记为 G = ( V , E ) G=(V,E) G=(V,E),其中 V ( G ) V(G) V(G)表示图 G G G中顶点的有限非空集, E ( G ) E(G) E(G)表示 G G G中顶点之间的关系(边)的集合。 ∣ V ∣ |V| V表示顶点个数, ∣ E ∣ |E| E表示边的个数。

  1. 有向图:若 E E E是有向边(也称之为弧)的有限集合时,则图 G G G为有向图。弧时顶点的有序对,记为 < v , w > <v,w> <v,w>,从 v v v指向 w w w的弧。

  2. 无向图:若 E E E时无向边的有限集合时,则图 G G G为无向图。边的顶点时无序对,记为 ( v , w ) (v,w) (v,w)或者 ( w , v ) (w,v) (w,v)

  3. 完全图(也称简单完全图):在无向图中 0 ≤ ∣ E ∣ ≤ n × ( n − 1 ) 2 0\le |E|\le\frac{n\times(n-1)}{2} 0E2n×(n1),若 ∣ E ∣ = n × ( n − 1 ) 2 |E|=\frac{n\times(n-1)}{2} E=2n×(n1)时,我们称之为完全图;在有向图中 0 ≤ ∣ E ∣ ≤ n × ( n − 1 ) 0\le |E|\le n\times (n-1) 0En×(n1),若 ∣ E ∣ = n × ( n − 1 ) |E|=n\times(n-1) E=n×(n1)时,我们称之为有向完全图**。**

  4. 连通,连通图和连通分量:在无向图中,若从顶点 v v v到顶点 w w w有路径存在,则称 v v v w w w是连通的。若图 G G G中任意两个顶点都是连通的,则称图 G G G是连通图,反之称为非连通图。无向图中的极大连通子图称为连通分量。

  5. 强连通图,强连通分量:在有向图中,若有一对顶点 v v v w w w,从 v v v w w w和从 w w w v v v之间都有路径,则成这两个顶点是强连通的。若图中任何一对顶点都是强连通的,则称此图为强连通图。有向图中的极大强连通子图称为强连通分量。、

  6. 生成树,生成森林:连通图的生成树是包含途中全部顶点的一个极小连通图。对于生成树而言,若少一条边,则会变成非连通图,若都一条边,则会形成一个回路。在非连通图中,连通分量的生成树构成了非连通图的生成森林。

    注意:极大连通子图是无向图的连通分量,极大要求该连通子图包含其所有的边,极小连通子图既要保持图的连通又要是的变数最小的子图。

  7. 顶点的度:在无向图中,顶点 v v v的度是指依附于顶点 v v v的边的条数,记为 T D ( v ) TD(v) TD(v)。对于具有 n n n个顶点, e e e条边的无向图, ∑ i = 1 n T D ( v i ) = 2 e \sum^n_{i=1}TD(v_i)=2e i=1nTD(vi)=2e

  8. 权:在一个图中,每条边都可以标上具有某种含义的数值,该数值称为该边的权值。这种带权图也称之为网。

  9. 路劲,路径长度和回路:顶点 v p v_p vp到顶点 v q v_q vq之间的一条路径是指顶点序列 v p , v 1 , v 2 , … v n , v q v_p,v_1,v_2,\dots v_n,v_q vp,v1,v2,vn,vq,路劲上面的数目称为路劲长度。第一个顶点和最后一个顶点相同的路径称为回路或环。

  10. 简单路径,简单回路:在路径中,顶点不重复出现的路径称为简单路径。除了第一个顶点和最后一个顶点外,其余顶点不重复出现的路径称为简单回路。

  11. 距离:从顶点 u u u出发到顶点 v v v的最短路径若存在,则称此路径的长度为从 v v v u u u的距离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星*湖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值