2.题目描述:
我们正在玩一个猜数游戏,游戏规则如下:
a. 我从 1 到 n 之间选择一个数字。
b. 你来猜我选了哪个数字。
c. 如果你猜到正确的数字,就会 赢得游戏 。
d. 如果你猜错了,那么我会告诉你,我选的数字比你的 更大或者更小 ,并且你需要继续猜数。
e. 每当你猜了数字 x 并且猜错了的时候,你需要支付金额为 x 的现金。如果你花光了钱,就会输掉游戏 。
给你一个特定的数字 n ,返回能够 确保你获胜 的最小现金数,不管我选择那个数字 。
示例 1:
输入:n = 10
输出:16
解释:制胜策略如下:
• 数字范围是 [1,10] 。你先猜测数字为 7 。
- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $7 。
- 如果我的数字更大,则下一步需要猜测的数字范围是 [8,10] 。你可以猜测数字为 9 。
- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $9 。
- 如果我的数字更大,那么这个数字一定是 10 。你猜测数字为 10 并赢得游戏,总费用为 $7 + $9 = $16 。
- 如果我的数字更小,那么这个数字一定是 8 。你猜测数字为 8 并赢得游戏,总费用为 $7 + $9 = $16 。
- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,6] 。你可以猜测数字为 3 。
- 如果这是我选中的数字,你的总费用为 $7 。否则,你需要支付 $3 。
- 如果我的数字更大,则下一步需要猜测的数字范围是 [4,6] 。你可以猜测数字为 5 。
- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $5 。
- 如果我的数字更大,那么这个数字一定是 6 。你猜测数字为 6 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
- 如果我的数字更小,那么这个数字一定是 4 。你猜测数字为 4 并赢得游戏,总费用为 $7 + $3 + $5 = $15 。
- 如果我的数字更小,则下一步需要猜测的数字范围是 [1,2] 。你可以猜测数字为 1 。
- 如果这是我选中的数字,你的总费用为 $7 + $3 = $10 。否则,你需要支付 $1 。
- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $7 + $3 + $1 = $11 。
在最糟糕的情况下,你需要支付 $16 。因此,你只需要 $16 就可以确保自己赢得游戏。
示例 2:
输入:n = 1
输出:0
解释:只有一个可能的数字,所以你可以直接猜 1 并赢得游戏,无需支付任何费用。
示例 3:
输入:n = 2
输出:1
解释:有两个可能的数字 1 和 2 。
◦ 你可以先猜 1 。
- 如果这是我选中的数字,你的总费用为 $0 。否则,你需要支付 $1 。
- 如果我的数字更大,那么这个数字一定是 2 。你猜测数字为 2 并赢得游戏,总费用为 $1 。 最糟糕的情况下,你需要支付 $1 。
提示:
1 <= n <= 200
3. 解法(暴搜 -> 记忆化搜索):
算法思路:
暴搜:
a. 递归含义:给 dfs 一个使命,给他一个区间 [left, right] ,返回在这个区间上能完胜的最小费用;
b. 函数体:选择 [left, right] 区间上的任意一个数作为头结点,然后递归分析左右子树。求出所有情况下的最小值;
c. 递归出口:当 left >= right 的时候,直接返回 0 。
记忆化搜索:
a. 加上一个备忘录;
b. 每次进入递归的时候,去备忘录里面看看;
c. 每次返回的时候,将结果加入到备忘录里面。
Java算法代码:
class Solution {
int [][] memo;
public int getMoneyAmount(int n) {
memo = new int[n+1][n+1];
return dfs(1,n);
}
public int dfs(int left, int right) {
if(left >= right) return 0;
if(memo[left][right] != 0) return memo[left][right];
int ret = Integer.MAX_VALUE;
for( int head = left; head <= right; head++){
int x = dfs(left, head - 1);
int y = dfs(head + 1,right);
ret = Math.min(Math.max(x,y) + head, ret);
}
memo[left][right] = ret;
return ret;
}
}
运行结果:
递归展开:
这里笔者简单做两句解释,一个是先找最大的(再一个二叉搜索树中,看那个比较大,也就是从那个叉上来比较大。),然后再这里找到的所有的大的值里面取最小的。
逻辑展开:笔者这里是通过n=3来进行展开,并且同时以二叉搜索树的形式来画(笔者可以思考一下)。为什么这里的二叉搜索树。
---------------------------------------------------------------------------------------------------------------------------------
记住,相信你的递归函数,它可以做到!
记住,不理解时候,去尝试手动展开!
记住,逻辑展开(你不可能对所有的题目都进行手动展开)!