题目描述
对于一个递归函数w(a,b,c)w(a,b,c)
如果a \le 0a≤0 or b \le 0b≤0 or c \le 0c≤0就返回值11.
如果a>20a>20 or b>20b>20 or c>20c>20就返回w(20,20,20)w(20,20,20)
如果a<ba<b并且b<cb<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c)w(a,b,c−1)+w(a,b−1,c−1)−w(a,b−1,c)
其它的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)w(a−1,b,c)+w(a−1,b−1,c)+w(a−1,b,c−1)−w(a−1,b−1,c−1)
这是个简单的递归函数,但实现起来可能会有些问题。当a,b,ca,b,c均为15时,调用的次数将非常的多。你要想个办法才行.
absi2011 : 比如 w(30,-1,0)w(30,−1,0)既满足条件1又满足条件2
这种时候我们就按最上面的条件来算
所以答案为1
输入格式
会有若干行。
并以-1,-1,-1−1,−1,−1结束。
保证输入的数在[-9223372036854775808,9223372036854775807][−9223372036854775808,9223372036854775807]之间,并且是整数。
输出格式
输出若干行,每一行格式:
w(a, b, c) = ans
注意空格。
输入输出样例
输入 #1复制
1 1 1
2 2 2
-1 -1 -1
输出 #1复制
w(1, 1, 1) = 2
w(2, 2, 2) = 4
解题思路:注意记忆化搜索。
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int f[25][25][25];
int w(int a,int b,int c)
{
if(a<=0||b<=0||c<=0)
return 1;
else if(a>20||b>20||c>20)
return w(20,20,20);
else if(a<b&&b<c)
{
if(f[a][b][c]==0)
return f[a][b][c]=w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c);
else
return f[a][b][c];
}
else
{
if(f[a][b][c]==0)
return f[a][b][c]=w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1);
else
return f[a][b][c];
}
}
int main()
{
int a,b,c;
while(cin>>a>>b>>c&&(a!=-1||b!=-1||c!=-1))
{
memset(f,0,sizeof(f));
int ans=w(a,b,c);
printf("w(%d, %d, %d) = %d",a,b,c,ans);
printf("\n");
}
return 0;
}