动态规划

基本思想:
动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。 每一个解都对应于一个值,我们希望找到具有最优值的解。

基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。

如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。

步骤:

  • 找出最优解的性质,并刻画其结构特征;
  • 递归地定义最优值(写出动态规划方程);
  • 以自底向上的方式计算出最优值;
  • 根据计算最优值时得到的信息,构造一个最优解。
    动态规划问题的特征
    动态规划算法的有效性依赖于问题本身所具有的两个重要性质:
    最优子结构:
    - 当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
    重叠子问题:
    - 在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。

0-1背包问题
给定一个物品集合s={1,2,3,…,n},物品i的重量是wi,其价值是vi,背包的容量为W,即最大载重量不超过W。在限定的总重量W内,我们如何选择物品,才能使得物品的总价值最大。

#include <bits/stdc++.h>
using namespace std;

int m[10][10];
int w[10],v[10];
int main()
{
    int n,sum;
    cin>>n>>sum;
    for(int i=1;i<=n;i++)
        cin>>w[i]>>v[i];
    for(int i=0;i<=sum;i++)
    {
        m[i][0]=0;
        m[0][i]=0;
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=sum;j++)
        {
            if(j<w[i])
                m[i][j]=m[i-1][j];
            else
                if(m[i-1][j]>(m[i-1][j-w[i]]+v[i]))
                    m[i][j]=m[i-1][j];
                else
                    m[i][j]=m[i-1][j-w[i]]+v[i];
        }
    cout<<m[n][sum]<<endl;
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值