求外参数方法(求坐标系转换矩阵方法)

问题:假如已知两个坐标系如图,如何得到外参数(坐标系变换矩阵:包括旋转和平移)? 如图红色为x轴,绿色为y轴,蓝色为z轴 粗的代表摄像头坐标系,细的代表世界坐标系。 以上情况如果安装轴一个个旋转,很难想象其中的旋转过程。用下面方法1简单的求。 方法1线性变换求旋转矩阵法 设同一个点P在世...

2019-06-12 13:53:18

阅读数 26

评论数 0

imu积分定位

imu积分定位的输入为imu传感器得到的线性加速度和角速度,输出为积分得到的位姿(位置和角度)。 具体公式为: 1.求旋转 设前一帧位姿的旋转用旋转矩阵表示为R1R_{1}R1​,当前帧位姿的旋转用旋转矩阵表示为R2R_{2}R2​ ,假设对机器人进行了一次旋转,可以表示为如下: R2=...

2019-06-10 10:15:07

阅读数 48

评论数 0

vins中紧耦合优化模型(状态量状态方程观测方程)

问题:vins中误差方程包括哪些? vins中整体误差方程包含视觉重投影误差、IMU测量误差和先验误差。 优化的factor有 imu_factor.h,marginalization_factor.h,projection_factor.h 问题:vin中优化的状态量是什么? 1.im...

2019-06-06 12:26:08

阅读数 20

评论数 0

最小二乘法和卡尔曼滤波的关系

来看一个生活中的例子。比如说,有五把尺子测量同一个线段的长度,测量值为9.8,9.9,10,10.1,10.2 之所以出现不同的值可能因为:不同厂家的尺子的生产精度不同, 尺子材质不同,热胀冷缩不一样。 总之就是有误差,这种情况下,一般取平均值来作为线段的长度。 可是到底线段的真值是多少呢?...

2019-06-05 09:46:46

阅读数 31

评论数 0

Eigen的LLT分解

Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。Eigen的LLT分解实现了Cholesky 分解。代码如下: #include<Eigen/Cholesky> int main(int argc, char** argv) ...

2019-05-15 15:34:53

阅读数 36

评论数 0

python画图

参考文献 https://www.jianshu.com/p/78ba36dddad8 首先了解下图上的标示代表什么 1.最简单的作图 import matplotlib.pyplot as plt import numpy as np x = np.linspace(-2, ...

2019-05-06 16:12:15

阅读数 40

评论数 0

opencv转eigen数据结构笔记

表示位姿的数据结构相互转换。 1.T->T opencv ->eigen Eigen::Matrix4d opencv_T_to_matrix4d(const cv::Mat &cvT) { Eigen::Matrix4d e_T; e_...

2019-04-24 16:41:37

阅读数 58

评论数 0

opencv卡尔曼滤波详解

1.问题描述 假设下面曲线 y=kx+b+w y=kx+b+w y=kx+b+w 其中a,b为曲线的参数,w为高斯噪声。假设我们有N个关于x,y的观测数据点,想根据这些数据点求出直线的参数。 2.卡尔曼滤波拟合点斜式直线 2.1状态变量 状态变量是需要求解的参数。对于拟合一条直线y...

2019-04-18 09:42:24

阅读数 247

评论数 0

非线性最小二乘和卡尔曼滤波拟合直线对比

1.问题描述 假设下面曲线 y=kx+w y=kx+w y=kx+w 其中k为曲线的参数,w为高斯噪声。假设我们有N个关于x,y的观测数据点,想根据这些数据点求出直线的参数。 注意:对于以上问题是拟合一条过原点的直线。只拟合直线的斜率这一个参数,状态变量的维数为1。 2.非线性最小二...

2019-04-15 11:07:26

阅读数 552

评论数 1

ceres实现鱼眼相机模型bundle adjustment

本文主要工作: (1)投影模型改为鱼眼相机畸变模型 (2)具有数学公式计算的template类的coding #include<iostream> #include<eigen3/Eigen/Core> #in...

2019-03-14 09:27:42

阅读数 165

评论数 0

ceres实现针孔相机bundle adjustment

参考ceres的tutorial http://ceres-solver.org/nnls_tutorial.html#bundle-adjustment 实现针孔相机bundle adjustment 主要工作如下: (1)生成理想观测数据 (2)将生成理想的数据作为BD的输入源 (...

2019-03-13 17:43:26

阅读数 199

评论数 0

opencv鱼眼相机模型详解

https://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.html

2019-03-08 15:45:46

阅读数 95

评论数 0

OpenCV FindContours使用

FindContours实现了论文Topological structural analysis of digitized binary images by border following 使用例子 #include "opencv2/imgcodecs.hpp&a...

2019-03-07 17:31:09

阅读数 47

评论数 0

相机投影和反投影

问题:如图,已知相机的外参,并已知正方体的底部正方形ABCD在图像上的坐标,如何反投影求得正方形ABCD在世界坐标系上的坐标点? (粗的代表摄像头坐标系,细的代表世界坐标系) 如图红色为x轴,绿色为y轴,蓝色为z。 主要解决思路是:反投影将图像坐标化为归一化平面。由于摄像头在世界坐标系上...

2019-03-07 15:01:53

阅读数 354

评论数 0

外参数获取推导(求坐标系转换矩阵方法)

问题:假如已知两个坐标系如图,如何得到外参数(坐标系变换矩阵:包括旋转和平移)? 如图红色为x轴,绿色为y轴,蓝色为z轴 粗的代表摄像头坐标系,细的代表世界坐标系。 1. 观察变换推导法 步骤:(1)求旋转矩阵R12 (2)求平移t12 1)求旋转矩阵R12:很显然,世界坐标系轴绕z轴...

2019-03-07 11:15:48

阅读数 348

评论数 0

ROS中显示坐标系

1.在ros中显示坐标系 问题1:假设世界坐标系原点表示为(x,y,z,roll,pitch,yaw)=(0,0,0,0, 0, 0,),某摄像头在世界坐标系下的位姿为(x,y,z,roll,pitch,yaw)=(0,0,1,0 ,0,90),如何在ROS中显示? 使用tf来发布显示,程序如下 ...

2019-03-06 14:23:51

阅读数 155

评论数 0

(八)turtlebot3路径规划解析

路径规划包括全局路径规划和局部路径规划 1.全局路径规划 turtlebot3全局路径规划采用astar或者Dijkstra算法。 首先计算潜在的路径 bool found_legal = planner_->calc...

2019-03-02 14:22:54

阅读数 363

评论数 1

视觉概率栅格地图相关论文

An Approach for 2D Visual Occupancy Grid Map Using Monocular Vision

2019-02-12 17:42:08

阅读数 125

评论数 0

hector slam论文笔记

1.系统总揽 系统有两大部分组成 A navigation filter fuses information from the inertial measurement unit and other available sensors to form a consistent 3D solut...

2019-02-01 11:56:25

阅读数 468

评论数 0

相机右手坐标系

在slam中,总是会牵涉到坐标系变换,那么就需要将坐标系定义弄清楚。需要弄清楚相机坐标系定义。相机坐标系定义为右手坐标系。 opencv的图像坐标系统(Image Coordinate System)如图。 坐标是三维坐标(x,y,z)原点(0,0,0)在深度相机的中心。如果没有明确指定,则以米...

2019-01-28 10:32:10

阅读数 170

评论数 0

提示
确定要删除当前文章?
取消 删除