设备综合效率OEE:基于数采的OEE优化分析

本文探讨了OEE(设备综合效率)在计算中的不准确性问题,主要源于无法全面采集所有影响因素。作者提出通过引入有效运行时间和系统停机时间的概念,以及将影响因素分为五大类,来提高OEE计算的准确性。数据来源分为现场扫码录入、数采+逻辑判断和MES提供,以确保涵盖正常停机、计划停机、性能影响及良品率等因素。
摘要由CSDN通过智能技术生成

OEE当前的问题

设备综合效率OEE:Overall Equipment Effectiveness

OEE用来表现设备实际的生产能力相对于理论产能的比率,是一种独立的测量工具;OEE的公式很简单,各种SAAS类软件也都有OEE自动计算的功能,但问题是计算的OEE不准确,而不准确的原因是:并非所有的影响因素都能被准确采集并统计计算的,比如设备的地基塌了,设备被迫关机,这个影响因素是降低了“时间稼动率”的,但很难采集并且算进OEE中。
在这里插入图片描述
这里作者给出一个不太完美的解决方案,但是能尽量以最低成本提高OEE的准确性。

提高OEE计算准确性的方案

OEE本身不具备时间的完备性,为了完善OEE的缺陷,这里引入两个概念:

  1. 用时间作为衡量指标:一台设备真正创造价值的时间是有效运行时间 * 产品的良品率
  2. 引入“系统停机时间”、“计划停机时间”用来完备全时间

在这里插入图片描述
计算OEE的主要目的是知道一台设备真正创造价值的时间是多少,影响设备创造价值的原因是什么,然后再针对性的去解决问题并提高单台设备创造价值的比率。

一、将影响因素分为5大类:

  1. 正常停机原因:非上班时间;比如工作日的下班时间、周末、法定节假日等
  2. 计划停机原因:上班时间,但还没到正常生产时间;如早会、卫生清洁等
  3. 影响时间稼动率原因:生产时间,但设备没有运行;这里可分为三类:①待机:设备处于待机状态,比如在换料、换刀具等;②故障:设备处于故障状态;③异常停机:设备因为异常原因导致停机,如安全事故、突发停电等
  4. 影响性能稼动率原因:设备运行,但处于非加工状态;比如设备在预热、空转等
  5. 良品率:设备利用加工时间,生产的全部产品的合格率

二、数据来源分为3大类:

  1. 现场扫码录入:针对停机原因,因为停机原因是很难通过数采完成的,只能借助人工方式录入,停机原因分为:正常停机、计划停机、异常停机
  2. 数采+逻辑判断:基于数采,通过逻辑配置去自定义三大类状态(运行、待机、故障)的子状态,而这些子状态就包含了影响时间稼动率、性能稼动率的原因
  3. MES提供:针对良品率,因为MES是面向生产的,它知道总产量、良品率、不良品率以及影响产品质量的原因
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CC来瞎扯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值