OEE当前的问题
设备综合效率OEE:Overall Equipment Effectiveness
OEE用来表现设备实际的生产能力相对于理论产能的比率,是一种独立的测量工具;OEE的公式很简单,各种SAAS类软件也都有OEE自动计算的功能,但问题是计算的OEE不准确,而不准确的原因是:并非所有的影响因素都能被准确采集并统计计算的,比如设备的地基塌了,设备被迫关机,这个影响因素是降低了“时间稼动率”的,但很难采集并且算进OEE中。
这里作者给出一个不太完美的解决方案,但是能尽量以最低成本提高OEE的准确性。
提高OEE计算准确性的方案
OEE本身不具备时间的完备性,为了完善OEE的缺陷,这里引入两个概念:
- 用时间作为衡量指标:一台设备真正创造价值的时间是有效运行时间 * 产品的良品率
- 引入“系统停机时间”、“计划停机时间”用来完备全时间
计算OEE的主要目的是知道一台设备真正创造价值的时间是多少,影响设备创造价值的原因是什么,然后再针对性的去解决问题并提高单台设备创造价值的比率。
一、将影响因素分为5大类:
- 正常停机原因:非上班时间;比如工作日的下班时间、周末、法定节假日等
- 计划停机原因:上班时间,但还没到正常生产时间;如早会、卫生清洁等
- 影响时间稼动率原因:生产时间,但设备没有运行;这里可分为三类:①待机:设备处于待机状态,比如在换料、换刀具等;②故障:设备处于故障状态;③异常停机:设备因为异常原因导致停机,如安全事故、突发停电等
- 影响性能稼动率原因:设备运行,但处于非加工状态;比如设备在预热、空转等
- 良品率:设备利用加工时间,生产的全部产品的合格率
二、数据来源分为3大类:
- 现场扫码录入:针对停机原因,因为停机原因是很难通过数采完成的,只能借助人工方式录入,停机原因分为:正常停机、计划停机、异常停机
- 数采+逻辑判断:基于数采,通过逻辑配置去自定义三大类状态(运行、待机、故障)的子状态,而这些子状态就包含了影响时间稼动率、性能稼动率的原因
- MES提供:针对良品率,因为MES是面向生产的,它知道总产量、良品率、不良品率以及影响产品质量的原因