串的逻辑结构
串:零个或多个字符组成的有限序列。
串长度:串中所包含的字符个数。
空串:长度为0的串,记为:" “。
非空串通常记为:
S=” s1 s2 …… sn "
其中:S是串名,双引号是定界符,双引号引起来的部分是串值 ,si(1≤i≤n)是一个任意字符。
串的逻辑结构:
子串:串中任意个连续的字符组成的子序列。
主串:包含子串的串。
子串的位置:子串的第一个字符在主串中的序号。
S1="ab12cd "
S2=“ab12”
S3=“ab13”
顺序串:用数组来存储串中的字符序列。
式匹配——BF算法
- 在串S和串T中设比较的起始下标i和j;
- 循环直到S或T的所有字符均比较完;
2.1 如果S[i]==T[j],继续比较S和T的下一个字符;
2.2 否则,将i和j回溯(i=i-j+1,j=0),准备下一趟比较; - 如果T中所有字符均比较完,则匹配成功,返回匹配的起始比较下标(i-j);否则,匹配失败,返回-1;
- int BF(char S[ ], char T[ ])
{
i=0; j=0;
while (i<S.Length()&&j<T.length())
{
if (S[i]==T[j]) {
i++; j++;
}
else {
i=i-j+1; j=0;
}
}
if (j>=T.length()) return (i-j);
else return -1;
}
KMP算法用伪代码描述:
1.在串S和串T中分别设比较的起始下标i和j;
2. 循环直到S中所剩字符长度小于T的长度或T中所有字符均比较完毕
2.1 如果S[i]==T[j],继续比较S和T的下一个字符;否则
2.2 将j向右滑动到next[j]位置,即j=next[j];
2.3 如果j=-1,则将i和j分别加1,准备下一趟比较;
3. 如果T中所有字符均比较完毕,则返回匹配的起始下标;否则返回-1;
int KMP_FindPat(char *s, char *t,int *next){
int i=0,j=0,k;
while(s[i]!=’\0’ && t[j]!=’\0’) {
if(j==-1 || s[i]t[j]) {
i++;
j++;
}
else
j=next[j];
}
if(t[j]’\0’)
return i-j;
else
return -1;
}
多维数组:
数组定义:
数组是由一组类型相同的数据元素构成的有序集合,每个元素受n(n≥1)个线性关系的约束,并称该数组为 n 维数组。
数组特点:
元素本身可以具有某种结构,属于同一数据类型;
数组是一个具有固定格式和数量的数据集合。
数组的基本操作
⑴ 存取:给定一组下标,读出对应的数组元素;
⑵ 修改:给定一组下标,存储或修改与其相对应的数组元素。
存取和修改操作本质上只对应一种操作——寻址
数组没有插入和删除操作,所以,不用预留空间,适合采用顺序存储。
数组常用的映射方法:
(1)按行优先:先行后列,先存储行号较小的元素,行号相同者先存储列号较小的元素。
(2)按列优先:先列后行,先存储列号较小的元素,列号相同者先存储行号较小的元素。
特殊矩阵和稀疏矩阵
(1)特殊矩阵:矩阵中很多值相同的元素并且它们的分布有一定的规律。
稀疏矩阵:矩阵中有很多零元素。
(2)压缩存储的基本思想是:
①为多个值相同的元素只分配一个存储空间;
②对零元素不分配存储空间。
(3)特殊矩阵的压缩存储——对称矩阵
只存储三角部分的元素。
对于下三角中的元素aij(i≥j), 在一维数组中的下标k与i、j的关系为:
k=i×(i-1)/2+j-1 。
上三角中的元素aij(i<j),因为aij=aji,则访问和它对应的元素aji即可,即:k=j×(j-1)/2+i -1。
(4)特殊矩阵的压缩存储——三角矩阵
(5)特殊矩阵的压缩存储——对角矩阵 (带状矩阵)
对角矩阵:所有非零元素都集中在以主对角线为中心的带状区域中,除了主对角线和它的上下方若干条对角线的元素外,所有其他元素都为零。
对角矩阵 (带状矩阵)压缩存储方法一 :二维数组法
存储结构定义:
const int MaxTerm=100;
template
struct SparseMatrix
{
T data[MaxTerm]; //存储非零元素
int mu, nu, tu; //行数,列数,非零元个数
};
稀疏矩阵的压缩存储——十字链表
template
class OLNode
{
public:
int row,col;
T element;
OLNode* right,*down;
public:
OLNode(){right=NULL;down=NULL;};
};