NLP-Lecture 4 Part-Of-Speech Tagging

Learning Objective

  • Part-of-Speech Tags
  • Part-of-Speech Tagging
    • Simple Statistic Models
    • Sequence Labeling Models: Hidden Markov Model (HMM)
    • Maximum Entropy Markov Model (MEMM)
    • Conditional Random Fields (CRF)

Part-of-Speech Tagging

Introduction to Part-Of-Speech (POS) Tagging

  • Part-of-Speech (for short POS) is the name for a group words, which have similar grammatical functions, such as noun, verb, pronoun, proposition, adverb, conjunction, participle and article.
    • They are also known as syntactic classes(句法类别序列).
  • A semantic class associates to the general meaning, such as human, animal and plant.
  • Part-of-Speech tagging is a task of assigning a part-of-speech tag (like noun, verb, adjectives) to each word in a sentence. In such labelings, parts of speech are generally represented by placing the tag after each word, delimited by a slash.

在这里插入图片描述
在这里插入图片描述

  • Part-of-speech tagging is the process of assigning a part-of-speech marker to each word in an input text.3
    The input to a tagging algorithm is a sequence of (tokenized) words and a tagset, and the output is a sequence of tags, one per token.

  • Tagging is a disambiguation task; words are ambiguous—have more than one possible part-of-speech—and the goal is to find the correct tag for the situation. The goal of POS-tagging is to resolve these resolution ambiguities, choosing the proper tag for the context.

  • How common is tag ambiguity? Fig. 8.2 shows that most word types (85-86%) are unambiguous (Janet is always NNP, funniest JJS, and hesitantly RB). But the ambiguous words, though accounting for only 14-15% of the vocabulary, are very common words, and hence 55-67% of word tokens in running text are ambiguous. Some of the most ambiguous frequent words are that, back, down, put and set; here are some examples of the 6 different parts of speech for the word back:
    在这里插入图片描述

  • POS Tagging is a disambiguation task, i.e., finding the correct tag for the word according to the context.

POS Tag Sets

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值