学习视频:
霹雳吧啦Wz-目标检测mAP计算以及coco评价标准
【目标检测】指标介绍:mAP
1 TP/FP/FN
- TP(True Positive) : IoU>0.5的检测框数量(同一Ground truth只计算一次)
- FP(False Positive) : IoU<=0.5的检测框(或者是检测到同一个GT的多余检测框的数量),误检的个数
- FN(False Negative) : 没有检测到的GT的数量,漏检的目标的个数
1.1 举例分析
上面的图中有两只小猫,绿色的是他们的标注框,可以看到模型对于蝴蝶结小猫这个目标预测了两个目标框,分别为红框和黄框
- 红色预测框和标注框的IOU>0.5,所以红框为TP
- 黄色预测框和标注框的IOU<0.5,所以红框为FP
- 模型对于铃铛小猫是没有预测出任何框的,所以为FN
2 Presion和Recall
-
Precision(查准率): 模型预测的所有目标(TP+FP)中,预测正确的(TP)比例 P r e c i s i o n = T P / ( T P + F P ) Precision = TP / (TP +FP) Precision=TP/(TP+FP)
-
Recall(查全率): 所有真实目标(TP+FN)中,预测正确(TP)的比例 R e c a l l = T P / ( T P + F N ) Recall = TP / (TP + FN) Recall