最详细最清晰的epoch、batchsize和iteration概念辨析

本文探讨了梯度下降算法的基本原理,特别是学习率的作用,以及在深度学习中批量大小(BatchSize)、Epochs和Iterations的概念。它解释了为何需要这些概念,以及它们如何影响模型的训练速度、稳定性和内存消耗。同时介绍了批量梯度下降、随机梯度下降和小批量梯度下降的不同策略及其优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考博文和图片来源 : Epoch vs Batch Size vs Iterations

1 前导知识

1.1 梯度下降和学习率

梯度下降算法是一种用于机器学习的迭代优化算法,用于寻找最佳结果(损失函数曲线的最小值)。

  • 梯度(坡度)是指斜坡的倾斜度或倾斜度。
  • Descent:下降。

该算法是迭代的(iterative),意味着我们需要多次进行多次计算才能得到最优的结果。

在这里插入图片描述

梯度下降法有一个参数叫做学习率(learning rate)

如上图(左所示),一开始成本/损失函数(cost function)上的point下降的较快,说明学习率较大,步长大,随着该point的下降变慢,学习率逐渐减小,步长变慢。

梯度下降算法就是为了找到损失函数的最小值

1.2 为什么需要batchsize/epoch/iteration

当数据太大的时候,我们不能一次把所有的数据传递给计算机。因此我们需要将数据分成更小的大小,并将其一个接一个地交给我们的计算机,并在每一步结束时更新神经网络的权重。

2 Epoch

One Epoch is when an ENTIRE dataset is passed forward and backward through the neural network only ONCE.

由于一个epoch太大,不能一次输入到计算机中,我

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值