并查集概念
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题。常常在使用中以森林来表示。
第一个问题:有向图最短路径问题
第二个问题:leetcode547朋友圈问题
一丶
求一张图的最短路径。
#include <stdio.h>
int f[256];
struct li {
char v;
char u;
int w;
int tag;
}node[1000];
int n, e;
int find(int x)
{
if (f[x] != x)
{
f[x] = find(f[x]);
}
return f[x];
}
int main()
{
scanf("%d %d", &n, &e);
int i,j;
for (i = 0; i < 256; i++)f[i] = i;
char s[1000];
scanf("%s", s);
getchar();
for (i = 0; i < e; i++)
{
scanf("(%c,%c,%d)", &node[i].v, &node[i].u, &node[i].w);
}
for (i = 0; i < e-1; i++)
{
for (j = 0; j < e - i - 1; j++)
{
if (node[j].w > node[j + 1].w)
{
struct li t = node[j];
node[j] = node[j + 1];
node[j + 1] = t;
}
}
}
for (i = 0; i < e; i++)
{
int f1 = find(node[i].v);
int f2 = find(node[i].u);
if (f1 != f2)
{
node[i].tag = 1;
f[f1] = f[f2];
}
printf("(%c,%c,%d,%d)", node[i].v, node[i].u, node[i].w, node[i].tag);
}
}
二丶
班上有 N 名学生。其中有些人是朋友,有些则不是。他们的友谊具有是传递性。如果已知 A 是 B 的朋友,B 是 C 的朋友,那么我们可以认为 A 也是 C 的朋友。所谓的朋友圈,是指所有朋友的集合。
给定一个 N * N 的矩阵 M,表示班级中学生之间的朋友关系。如果M[i][j] = 1,表示已知第 i 个和 j 个学生互为朋友关系,否则为不知道。你必须输出所有学生中的已知的朋友圈总数。
示例 1:
输入:
[[1,1,0],
[1,1,0],
[0,0,1]]
输出:2
解释:已知学生 0 和学生 1 互为朋友,他们在一个朋友圈。
第2个学生自己在一个朋友圈。所以返回 2 。
int f[1000];
int find(int x){
if(f[x]==x) return x;
else
{
f[x]=find(f[x]);
}
return f[x];
}
int findCircleNum(int** M, int MSize, int* MColSize){
int i,j,k;
for(i=0;i<MSize;i++)
{
f[i]=i;
}
k=MSize;
for(i=0;i<MSize;i++)
{
for(j=0;j<i;j++)
{
if(M[i][j]==0) continue;
if(find(f[i])!=find(f[j]))
{
k--;
f[find(i)]=f[find(j)];
}
}
}
return k;
}
这两个问题的共同点都用到了并查集,对应到题目里即是find这个函数
定义了一个数组用来存放某个结点的根元素,如果根元素不同,则不是同根,反之,则是。可以解决一些问题。