数学基础第一天

1.导数定义:

导数和微分的概念

[公式] (1)

或者:

[公式] (2)

2.左右导数导数的几何意义和物理意义

函数 [公式] 在[公式] 处的左、右导数分别定义为:

左导数: [公式]

右导数: [公式]

3.函数的可导性与连续性之间的关系

Th1: 函数 [公式] 在 [公式] 处可微 [公式] 在 [公式] 处可导

Th2: 若函数在点 [公式] 处可导,则 [公式] 在点 [公式] 处连续,反之则不成立。即函数连续不一定可导。

Th3: [公式] 存在 [公式]

4.平面曲线的切线和法线

切线方程 : [公式] 法线方程: [公式]

5.四则运算法则
设函数 [公式] 在点 [公式] 可导则
(1) [公式] [公式]
(2) [公式] [公式]
(3) [公式] [公式]

6.基本导数与微分表
(1) [公式] (常数)

[公式], [公式]
(2) [公式] ( [公式] 为实数)

[公式], [公式]
(3) [公式]

[公式], [公式]
特例: [公式], [公式]

(4) [公式]

[公式]
特例: [公式], [公式] ,[公式]

(5) [公式]

[公式] ,[公式], [公式]

(6) [公式]

[公式], [公式]

(7) [公式]

[公式], [公式]
(8) [公式]

[公式], [公式]
(9) [公式]

[公式] ,[公式]
(10) [公式]

[公式], [公式]
(11) [公式]

[公式], [公式]
(12) [公式]

[公式], [公式]

(13) [公式]

[公式] ,[公式]

(14) [公式]

[公式], [公式]
(15) [公式]

[公式] ,[公式]

(16) [公式]

[公式], [公式]

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设 [公式] 在点 [公式] 的某邻域内单调连续,在点 [公式] 处可导且 [公式] ,则其反函数在点 [公式] 所对应的 [公式] 处可导,并且有 [公式]
(2) 复合函数的运算法则:若 [公式] 在点 [公式] 可导,而 [公式] 在对应点 [公式] ( [公式] )可导,则复合函数 [公式] 在点 [公式] 可导,且 [公式]
(3) 隐函数导数 [公式] 的求法一般有三种方法:
1)方程两边对 [公式] 求导,要记住 [公式] 是 [公式] 的函数,则 [公式] 的函数是 [公式] 的复合函数。

例如 [公式] , [公式] , [公式] , [公式] 等均是 [公式] 的复合函数。
对 [公式] 求导应按复合函数连锁法则做。
2)公式法:由 [公式] 知 [公式] ,其中, [公式] , [公式] 分别表示 [公式] 对 [公式] 和 [公式] 的偏导数
3)利用微分形式不变性

8.常用高阶导数公式

(1) [公式]
(2) [公式]
(3) [公式]
(4) [公式]
(5) [公式]
(6)莱布尼兹公式:若 [公式] 均 [公式] 阶可导,则
[公式] ,其中 [公式] , [公式]

9.微分中值定理,,泰勒公式

Th1:(费马定理)

若函数[公式] 满足条件:
(1)函数 [公式] 在 [公式] 的某邻域内有定义,并且在此邻域内恒有:

[公式] 或 [公式] ,

(2) [公式] 在 [公式] 处可导,则有 [公式]

Th2:(罗尔定理)

设函数 [公式] 满足条件:
(1)在闭区间 [公式] 上连续;

(2)在 [公式] 内可导;

(3) [公式]

则在 [公式] 内存在一个 [公式] ,使 [公式]

Th3: (拉格朗日中值定理)

设函数 [公式] 满足条件:
(1)在 [公式] 上连续;

(2)在 [公式] 内可导;

则在 [公式] 内存在一个 [公式] ,使 [公式]

Th4: (柯西中值定理)

设函数 [公式] , [公式] 满足条件:
(1) 在 [公式] 上连续;

(2) 在 [公式] 内可导且 [公式] , [公式] 均存在,且 [公式]

则在 [公式] 内存在一个 [公式] ,使 [公式]

10.洛必达法则
法则Ⅰ ( [公式] 型)
设函数 [公式] 满足条件:
[公式] ;

[公式] 在 [公式] 的邻域内可导,(在 [公式] 处可除外)且 [公式] ;

[公式] 存在(或 [公式] )。

则:
[公式] 。
法则 [公式] ( [公式] 型)

设函数 [公式] 满足条件:
[公式] ;

存在一个 [公式] ,当 [公式] 时, [公式] 可导,且 [公式] ;

[公式] 存在(或 [公式] )。

则:
[公式]
法则Ⅱ( [公式] 型)

设函数 [公式] 满足条件:
[公式] ; [公式] 在 [公式] 的邻域内可导(在 [公式] 处可除外)且 [公式] ; [公式] 存在(或 [公式] )。

则: [公式] 。同理法则 [公式] ( [公式] 型)仿法则 [公式] 可写出。

11.泰勒公式

设函数 [公式] 在点 [公式] 处的某邻域内具有 [公式] 阶导数,则对该邻域内异于 [公式] 的任意点 [公式] ,在 [公式] 与 [公式] 之间至少存在一个 [公式] ,使得: [公式] [公式]

其中[公式] 称为 [公式] 在点 [公式] 处的 [公式] 阶泰勒余项。

令 [公式] ,则 [公式] 阶泰勒公式: [公式] ……(1)
其中 [公式] , [公式] 在0与 [公式] 之间,(1)式称为麦克劳林公式。

常用五种函数在 [公式] 处的泰勒公式

(1) [公式]

或 [公式]

(2) [公式]

或 [公式]

(3) [公式]

或 [公式]

(4) [公式]

或 [公式] [公式]

(5) [公式] [公式] [公式]

或 [公式]

12.函数单调性的判断

Th1: 设函数 [公式] 在 [公式] 区间内可导,如果对 [公式] ,都有 [公式] (或 [公式] ),

则函数 [公式] 在 [公式] 内是单调增加的(或单调减少)。

Th2: (取极值的必要条件)设函数 [公式] 在 [公式] 处可导,且在 [公式] 处取极值,

则 [公式] 。

Th3: (取极值的第一充分条件)设函数 [公式] 在 [公式] 的某一邻域内可微,且 [公式] (或 [公式] 在 [公式] 处连续,但 [公式] 不存在。)
(1) 若当 [公式] 经过 [公式] 时, [公式] 由“+”变“-”,则 [公式] 为极大值;
(2) 若当 [公式] 经过 [公式] 时, [公式] 由“-”变“+”,则 [公式] 为极小值;
(3) 若 [公式] 经过 [公式] 的两侧不变号,则 [公式] 不是极值。

Th4: (取极值的第二充分条件)设 [公式] 在 [公式] 处有 [公式] ,且 [公式] ,则:

当 [公式] 时, [公式] 为极大值;
当 [公式] 时, [公式] 为极小值。
注:如果 [公式] ,此方法失效。

13.渐近线的求法
(1)水平渐近线

若 [公式] ,或 [公式] ,则

[公式] 称为函数 [公式] 的水平渐近线。

(2)铅直渐近线

若 [公式] ,或 [公式] ,则

[公式] 称为 [公式] 的铅直渐近线。

(3)斜渐近线

若 [公式] ,则
[公式] 称为 [公式] 的斜渐近线。

14.函数凹凸性的判断

Th1: (凹凸性的判别定理)若在I上 [公式] (或 [公式] ),则 [公式] 在I上是凸的(或凹的)。

Th2: (拐点的判别定理1)若在 [公式] 处 [公式] ,(或 [公式] 不存在),当 [公式] 变动经过 [公式] 时, [公式] 变号,则 [公式] 为拐点。

Th3: (拐点的判别定理2)设 [公式] 在 [公式] 点的某邻域内有三阶导数,且 [公式] , [公式] ,则 [公式] 为拐点。

15.弧微分

[公式]

16.曲率

曲线 [公式] 在点 [公式] 处的曲率 [公式] 。
对于参数方程 [公式] [公式] 。

17.曲率半径

曲线在点 [公式] 处的曲率 [公式] 与曲线在点 [公式] 处的曲率半径 [公式] 有如下关系: [公式] 。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值