题目描述:
基本思路和之前做过的开灯问题很相似。
首先所有的灯都是关的(注意是关!),编号为1的人走过来,把是一的倍数的灯全部打开,编号为二的的把是二的倍数的灯全部关上,编号为3的人又把是三的倍数的灯开的关上,关的开起来……直到第N个人为止。
给定N,求N轮之后,还有哪几盏是开着的。
题解:
这里还是补充一个数学知识:任何一个正整数,如果它的约数是奇数个,那它只能是一个完全平方数!
证明一下:对于一个正整数n,如果i是它的约数,那么n / i
也是它的约数,那也就是说,我们确定一个约数,总能找到另一个与它相对应的约数,也就是我们找到的约数总是成对出现的。
那么如果出现这样的情况:n / i = i
。既是:n = i * i
,那么此时n只能是完全平方数了。此时它的约数就是sqrt(n)、1、和n
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int main()
{
int n;
cin >> n;
int temp = 0;
for(int i = 1;i * i <= n;i++){
if(!temp){
cout << i * i;
temp = 1;
}
else cout << ' ' << i * i;
}
cout << endl;
return 0;
}