题目描述:
已知任意一个正整数都可以拆分成有限个斐波那契数列之和。现在需要你编写程序证明。要求从小到大输出,若有多组数据,以个数最小的为准,若仍有多组,输出右边尽量大的一组。
题解:
这个题首先打表无疑,但是斐波那契数列的增长模式近乎指数型增长,斐波那契数列的第45项就已经爆了long long
,所以这个题的数据我们就限定了45项。然后要求个数最小,那么我们就可以贪心一下,按照从大到小来找数字,而实现从小到大的输出方式我们可以用栈来存数据,然后依次取栈顶元素。
AC代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<stack>
#define ll long long
using namespace std;
const int maxn = 45;
ll a[maxn] = {0};
void init()
{
memset(a,0,sizeof(a));
a[1] = 1,a[2] = 1;
for(int i = 3;i <= maxn;i++){
a[i] = a[i - 1] + a[i - 2];
}
}
int main()
{
init();
int t;
cin >> t;
while(t--){
int n;
cin >> n;
cout << n << '=';
stack<ll> s;
for(int i = 45;i >= 1;i--){
while(n >= a[i]){
s.push(a[i]);
n -= a[i];
}
if(n == 0) break;
}
while(s.size()){
if(s.size() == 1){
cout << s.top() << endl;
s.pop();
break;
}
else{
cout << s.top() << '+';
s.pop();
}
}
}
return 0;
}