- 看视频总结的·动态规划的基本步骤:
1.dp数组的定义和下标。
2.递推公式。
3.dp数组如何初始化,初始化也需要注意。
4.确定遍历顺序,比较考究.。
5.举例推导dp数组。
用简单的题目来加深对以上方法的理解。
-
- 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1给你 n ,请计算 F(n) 。
示例 1:输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
思路:
这里我们要用一个一维数组来保存子问题的解
- 确定dp数组及下标含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]。 - 确定递推公式
状态转移方程:dp[i]=dp[i-1]+dp[i-2]. - dp数组如何初始化
题目中显而易见:dp[0]=0,dp[1]=1. - 确定遍历顺序
从递推公式dp[i]=dp[i-1]+dp[i-2].中可以看出,dp[i]是依赖dp[i-1]和dp[i-2].的,那么遍历的顺序一定是从前到后遍历 - 举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导⼀下,当N为10的时候, dp数组应该是如下的
数列:
0 1 1 2 3 5 8 13 21 34 55 如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是⼀致的。
方法一:递归
*/
public class Solution {
public int Fibonacci(int n) {
// 初始值
if(n <= 0)
return 0;
if(n == 1 || n == 2)
return 1;
// F(n)=F(n-1)+F(n-2)
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
}
/*
递归的方法时间复杂度为O(2^n),随着n的增大呈现指数增长,效率低下
当输入比较大时,可能导致栈溢出
在递归过程中有大量的重复计算
*/
/*
方法二:动态规划
状态:F(n)
状态递推:F(n)=F(n-1)+F(n-2)
初始值:F(1)=F(2)=1
返回结果:F(N)
*/
public class Solution {
public int Fibonacci(int n) {
// 初始值
if(n <= 0)
return 0;
//