打家劫舍、斐波那契数、整数拆分(动态规划)

本文介绍了动态规划的基本步骤,并通过斐波那契数、打家劫舍和整数拆分三个实例进行深入讲解,帮助读者理解如何运用动态规划解决实际问题。文章详细阐述了每个问题的递推公式、初始化、遍历顺序和状态推导,提供了解题思路和关键代码片段。
摘要由CSDN通过智能技术生成
  • 看视频总结的·动态规划的基本步骤:

1.dp数组的定义和下标。

2.递推公式。

3.dp数组如何初始化,初始化也需要注意。

4.确定遍历顺序,比较考究.。

5.举例推导dp数组。
用简单的题目来加深对以上方法的理解。

    1. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1给你 n ,请计算 F(n) 。

示例 1:输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
思路:
这里我们要用一个一维数组来保存子问题的解

  1. 确定dp数组及下标含义
    dp[i]的定义为:第i个数的斐波那契数值是dp[i]。
  2. 确定递推公式
    状态转移方程:dp[i]=dp[i-1]+dp[i-2].
  3. dp数组如何初始化
    题目中显而易见:dp[0]=0,dp[1]=1.
  4. 确定遍历顺序
    从递推公式dp[i]=dp[i-1]+dp[i-2].中可以看出,dp[i]是依赖dp[i-1]和dp[i-2].的,那么遍历的顺序一定是从前到后遍历
  5. 举例推导dp数组
    按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导⼀下,当N为10的时候, dp数组应该是如下的
    数列:
    0 1 1 2 3 5 8 13 21 34 55 如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是⼀致的。
方法一:递归
*/
public class Solution {
   
public int Fibonacci(int n) {
   
// 初始值
if(n <= 0)
return 0;
if(n == 1 || n == 2)
return 1;
// F(n)=F(n-1)+F(n-2)
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
}
/*
递归的方法时间复杂度为O(2^n),随着n的增大呈现指数增长,效率低下
当输入比较大时,可能导致栈溢出
在递归过程中有大量的重复计算
*/
/*
方法二:动态规划
状态:F(n)
状态递推:F(n)=F(n-1)+F(n-2)
初始值:F(1)=F(2)=1
返回结果:F(N)
*/
public class Solution {
   
public int Fibonacci(int n) {
   
// 初始值
if(n <= 0)
return 0;
//
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

little-peter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值