题目描述:
对于任何正整数x,其约数的个数记作g(x),例如g(1)=1、g(6)=4。
如果某个正整数x满足:对于任意的小于x的正整数 i,都有g(x)>g(i) ,则称x为反素数。
例如,整数1,2,4,6等都是反素数。
现在给定一个数N,请求出不超过N的最大的反素数
题解:
首先这这个题需要用到这么几个推论:
1.1 ~ N中的最大反质数其实就是1 ~ N中约束最多的数中最小的那一个。
2.1 ~ N中的不同质因子数不会超过10,且所有质因子的指数总和不超过30.
3.对于一个1 ~ N中的数x,其为反质数的必要条件是:x分解质因子后,一定可以写成2 ^ c1 * 3 ^ c2 * 5 &^ c3 * .. * 29 ^ c10
且c1 >= c2 >= c3 >= c4 >= .. >= c10 >= 0
所以这么一讲,我们就可以DFS暴搜了!
我们尝试去确定每个质因子的指数,这样指数之和就是它的质因子数。
AC代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
ll zs[] = {2,3,5,7,11,13,17,19,23,29};
ll minx = 0,n,sum = 0;
void dfs(ll now,ll last,ll p,ll s)
{
if(s > sum || s == sum && p < minx)
{
sum = s;
minx = p;
}
for(ll i = 1ll;i <= last;i++){ //这里搜索的其实是每个质因子数的次数
if(p * zs[now] > n) break;
p *= zs[now];
dfs(now + 1,i,p,s * (i + 1));
}
}
int main()
{
cin >> n;
dfs(0,30,1,1);//当前质因数,上一质因数次数,因子个数,乘积
cout << minx << endl;
return 0;
}
注意:经过计算我们可知,当N取到2e9时,计算次数控制到了1500次以内,所以不会TLE的!