AcWing159T

本文探讨了一种利用KMP算法解决字符串数组完全覆盖的最小行数和列数的问题。首先尝试通过计算每行的最短不整除循环节来求解,但这种方法在某些数据下会失败。后来采用直接对字符串数组应用KMP算法,快速确定所需行数和列数,实现了更高效的解决方案。
摘要由CSDN通过智能技术生成

好久没看的 K M P KMP KMP
题解:
这个题一开始的思路是想看每一行的最短不整除循环节然后求一个 l c m lcm lcm,但是最后被自己的数据Hack了…
后来看了一下题解发现还可以直接对字符串数组进行 K M P KMP KMP,原理其实是一样的,不过可以更快得确定完全覆盖需要得最小行数和最小列数。
很妙的思路

#include <bits/stdc++.h>

#define ill __int128
#define ll long long
#define PII pair <ll,ll>
#define ull unsigned long long
#define me(a,b) memset (a,b,sizeof(a))
#define rep(i,a,b) for (int i = a;i <= b;i ++)
#define req(i,a,b) for (int i = a;i >= b;i --)
#define ios std :: ios :: sync_with_stdio(false)

const double Exp = 1e-9;
const int INF = 0x3f3f3f3f;
const int inf = -0x3f3f3f3f;
const ll mode = 1000000007;
const double pi = 3.141592653589793;

using namespace std;

const int maxn = 1e4 + 10;
int Next[maxn] = {}, R, C, len;
string r[maxn], l[maxn];

void calc_next1()
{
    me (Next, 0);
    Next[1] = 0;
    for (int i = 2, j = 0;i <= R;i ++) {
        while (j > 0 && r[i] != r[j + 1]) j = Next[j];
        if (r[i] == r[j + 1]) j ++;
        Next[i] = j;
    }
    return ;
}

void calc_next2()
{
    me (Next, 0);
    Next[1] = 0;
    for (int i = 2, j = 0;i <= C;i ++) {
        while (j > 0 && l[i] != l[j + 1]) j = Next[j];
        if (l[i] == l[j + 1]) j ++;
        Next[i] = j;
    }
    return ;
}

int main()
{
    ios;
    cin >> R >> C;
    len = C;
    for (int i = 1;i <= R;i ++) {
        cin >> r[i];
        r[i] = '$' + r[i];
    }
    calc_next1();
    int ans1 = R - Next[R];
    for (int i = 1;i <= C;i ++) {
        l[i] += '$';
        for (int j = 1;j <= ans1;j ++) {
            l[i] += r[j][i];
        }
    }
    calc_next2();
    int ans2 = C - Next[C];
    cout << ans1 * ans2 << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CUCKyrie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值