07OpenCV 图像模糊

图像掩膜操作

图像掩膜操作

模糊原理

  • Smooth/Blur是图像处理中最简单和常用的操作之一
    使用操作的原因之一就是为了给图像预处理时候减低噪声

    图像噪声是指存在于图像数据中的不必要的或多余的干扰信息

  • Smooth/Blur操作原理是数学的卷积运算,根据不同卷积运算公式,划分了多种图像滤波方式
    图像滤波:指的是在尽量保留图像特征的条件下对目标图像得噪声进行抑制

均值滤波

均值模糊无法克服边缘像素信息丢失缺陷。原因是均值滤波是基于平均权重

在这里插入图片描述
6x6像素表中,3x3的卷积算子从图一所示的红色像素开始卷积,依次从左至右,从上至下。取黄色像素值之和的平均值赋给红色像素,则红色像素为卷积之后的新像素。由此每次移动一个像素。显然,计算平均值时,取值范围越大,"模糊效果"越强烈。

高斯滤波

高斯模糊部分克服了该缺陷,但是无法完全避免,因为没有考虑像素值的不同

一阶高斯算子
在这里插入图片描述> 二阶高斯算子
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵.
在这里插入图片描述在这里插入图片描述在这里插入图片描述
将这9个值加起来,就是中心点的高斯模糊的值。
对所有点重复这个过程,就得到了高斯模糊后的图像。如果原图是彩色图片,可以对RGB三个通道分别做高斯模糊。

中值滤波

去除椒盐噪声
在这里插入图片描述

双边滤波

高斯双边模糊 – 是边缘保留的滤波方法,避免了边缘信息丢失,保留了图像轮廓不变

双边滤波就是经典的常用的能够保留图像边缘信息的滤波算法之一。双边滤波是一种综合考虑滤波器内图像空域信息和滤波器内图像像素灰度值相似性的滤波算法,可以实现在保留区域信息的基础上实现对噪声的去除、对局部边缘的平滑。双边滤波对高频率的波动信号起到平滑的作用,同时保留大幅值的信号波动,进而实现对保留图像中边缘信息的作用。双边滤波器是两个滤波器的结合,分别考虑空域信息和值域信息,使得滤波器对边缘附近的像素进行滤波时,距离边缘较远的像素值不会对边缘上的像素值影响太多,进而保留了边缘的清晰性。
在这里插入图片描述
空域核:在窗口内每个位置都有权重(即每个位置的像素都考虑)。
在这里插入图片描述
i,j 为模板窗口的其他系数的坐标;

k,l为模板窗口的中心坐标点;

σ为高斯函数的标准差。

w空间域核由像素位置欧式距离决定的模板权值

值域核:一定像素差范围进行局部模糊,像素值高的在高的部分模糊,低的在低的那部分模糊,保留了边缘区分
在这里插入图片描述
i ,j为模板窗口的其他系数的坐标,

f(i,j)表示图像在点i,j处的像素值;

k,l为模板窗口的中心坐标点,对应的像素值为f(k,l)

σ为高斯函数的标准差。

w值域核是由像素值的差值决定的模板权值

双边滤波器的模板权值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值