1.阶乘后的零
给定一个整数 n,返回 n! 结果尾数中零的数量。
示例 1:
输入: 3
输出: 0
解释: 3! = 6, 尾数中没有零。
示例 2:
输入: 5
输出: 1
解释: 5! = 120, 尾数中有 1 个零.
说明: 你算法的时间复杂度应为 O(log n) 。
思路:5和偶数的结合会产生尾数0 ==》2和5的结合=》2的个数比5多=》考虑阶乘数的组成有多少个5=》分解因子有多少个5=》循环算法
class Solution
public int Numberzeroes(int n)
{
int num=0;
while(n>0)
{
num+=n/5;
n/=5;
}
return num;
}
2…丢失的数字
给定一个包含 [0, n] 中 n 个数的数组 nums ,找出 [0, n] 这个范围内没有出现在数组中的那个数。
进阶:
• 你能否实现线性时间复杂度、仅使用额外常数空间的算法解决此问题?
示例 1:
输入:nums = [3,0,1]
输出:2
解释:n = 3,因为有 3 个数字,所以所有的数字都在范围 [0,3] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 2:
输入:nums = [0,1]
输出:2
解释:n = 2,因为有 2 个数字,所以所有的数字都在范围 [0,2] 内。2 是丢失的数字,因为它没有出现在 nums 中。
示例 3:
输入:nums = [9,6,4,2,3,5,7,0,1]
输出:8
思路:异或算法 相同的数字异或为0 数字和0异或为它本身 =》遍历一遍所有数字和数组里的数异或最终得到的数就是没有出现的
class Solution
{
public int missNumber(vector<int>&nums)
{
int n=nums.size();
int sum=0;
for(int i=0;i<n;i++)
{
sum^=i^nums[i];
}
return rs;
}