【知识总结】dfs序 树链剖分

本文深入探讨了树形数据结构中的两种重要算法——DFS序和树链剖分。DFS序通过深度优先搜索将树转化为线性序列,便于处理子树问题;树链剖分则用于处理链状结构,尤其适用于快速查询和更新。通过实例分析和代码展示,阐述了这两种算法的应用场景和解决策略,如区间最值查询、单点修改等,并提供了相关竞赛题目作为实践案例。
摘要由CSDN通过智能技术生成

视频:传送门1 传送门2

dfs序和树链剖分两者都借助hash的思想是将树形转化成线性的算法,前者主要处理子树问题,后者主要处理链的问题。

1.dfs序

定义: 顾名思义是按照dfs的顺序标号。

重要性质:每棵子树内的标号都是连续的,某些链的标号也是连续的。

代码:

int timetmp;///时间戳,计数器
int in[maxn];///表示dfs进某节点的时间
int out[maxn];///表示dfs出某节点的时间
///差值就是子树的节点个数
vector<int>e[maxn];///存图

void dfs(int u,int fa){
    in[u]=++timetmp;
    for(int i=0;i<e[u].size();i++){
        int j=e[u][i];
        if(j==fa) continue;
        dfs(j,u);
    }
    out[u]=timetmp;
}

例题1:(卿学姐给的例题 没找到来源)

题意:两种操作 1.将子树的所有节点的权值都+v 2.查询某子树的权值的max

思路:按照dfs序给所有节点标号,这样就将树上问题转化成了区间问题,由重要性质我们可以把操作一转化为区间加法,操作二转化为区间最值,用线段树维护就可以了。

例题2:POJ3321

题意:两种操作 1.修改某个节点的权值,如果原来是1,修改为0,如果原来是0,修改为1 ; 2.查询某子树的权值和

思路:转化为dfs序后,就转化成了单点修改、区间查询的问题,用树状数组或线段树维护即可。

2.树链剖分(重链剖分 logn)

基本概念:(sz[x]表示x的子树个数)

​ 重儿子:某节点的所有子节点里sz[x]最大的子节点(如果有多个就随便取一个)

​ 轻儿子:一个节点除了重儿子以外的儿子

​ 重链:从一个轻儿子(根节点也是轻儿子)开始,每次往重儿子走连出的链

​ 轻链:除了重链全是轻链

模拟过程:

第一遍dfs:记录节点的父亲、重儿子、深度、大小

第二遍dfs:记录节点权值的dfs序和时间戳,当前节点所在重链的头是谁

int son[maxn],id[maxn],fa[maxn],cnt,dep[maxn],siz[maxn],top[maxn];
///son[]重儿子编号,id[]新编号,fa[]父亲节点,cnt dfs_clock/dfs序,dep[]深度,siz[]子树大小,top[]当前链顶端节点
int res=0;
///查询答案
inline void dfs1(int x,int f,int deep){//x当前节点,f父亲,deep深度
    dep[x]=deep;//标记每个点的深度
    fa[x]=f;//标记每个点的父亲
    siz[x]=1;//标记每个非叶子节点的子树大小
    int maxson=-1;//记录重儿子的儿子数
    for(int i=h[x];i;i=ne[i]){
        int y=e[i];
        if(y==f)continue;//若为父亲则continue
        dfs1(y,x,deep+1);//dfs其儿子
        siz[x]+=siz[y];//把它的儿子数加到它身上
        if(siz[y]>maxson)son[x]=y,maxson=siz[y];//标记每个非叶子节点的重儿子编号
    }
}

inline void dfs2(int x,int topf){//x当前节点,topf当前链的最顶端的节点
    id[x]=++cnt;//标记每个点的新编号
    wt[cnt]=w[x];//把每个点的初始值赋到新编号上来
    top[x]=topf;//这个点所在链的顶端
    if(!son[x])return;//如果没有儿子则返回
    dfs2(son[x],topf);//按先处理重儿子,再处理轻儿子的顺序递归处理
    for(int i=h[x];i;i=ne[i]){
        int y=e[i];
        if(y==fa[x]||y==son[x])continue;
        dfs2(y,y);//对于每一个轻儿子都有一条从它自己开始的链
    }
}

重要性质:

重链上的编号都是连续的。

任何一条路径都是由重链的一部分和叶子节点组成的。

除根节点外的任意一个节点的父节点一定在一条重链上。

然后一般就再用树状数组或线段树维护信息。

例题:洛谷P3384

思路:

​ 树剖之后操作3和操作4都利用区间修改和区间查询可以解决。

inline int qSon(int x){///操作4
    res=0;
    query(1,1,n,id[x],id[x]+siz[x]-1);//子树区间右端点为id[x]+siz[x]-1
    return res;
}

inline void updSon(int x,int k){//操作3
    update(1,1,n,id[x],id[x]+siz[x]-1,k);
}

​ 对于操作1和操作2,如果两个节点在一条重链上,问题就转化成了区间修改和区间查询;如果不在一条重链上,可以维护两个指针指向两个节点,不停地让dep[top[i]]大的节点的指针沿着所在重量往上跳,同时在线段树上进行操作,直到两指针到同一节点或同一重链。

int qRange(int x,int y){//操作2  表示求树从 x到 y 结点最短路径上所有节点的值之和
    int ans=0;
    while(top[x]!=top[y]){//当两个点不在同一条链上
        if(dep[top[x]]<dep[top[y]])swap(x,y);//把x点改为所在链顶端的深度更深的那个点
        res=0;
        query(1,1,n,id[top[x]],id[x]);//ans加上x点到x所在链顶端 这一段区间的点权和
        ans+=res;
        ans%=mod;//按题意取模
        x=fa[top[x]];//把x跳到x所在链顶端的那个点的上面一个点
    }
    //直到两个点处于一条链上
    if(dep[x]>dep[y])swap(x,y);//把x点变为深度更深的那个点
    res=0;
    query(1,1,n,id[x],id[y]);//这时再加上此时两个点的区间和即可
    ans+=res;
    return ans%mod;
}

待补

【牛客】2020牛客暑期多校训练营(第七场)C- A National Pandemic

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值