原题链接
题意:
给出一个长度为n的序列和k,要求选出一个最短的子序列使得该子序列包含1~k所有数并且字典序最小。
思路:
一开始也想到单调栈了,然后用deque模拟一直没过。
大体思路就是:
如果当前栈为空的话,直接入栈;
如果不为空的话,考虑栈顶元素和当前元素的关系,如果栈顶元素大于当前元素并且栈顶元素在后面还有的话,就弹出栈顶元素,因为可以用后面的元素来替代这个元素。
最后倒着把序列输出就可以了。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll>PLL;
typedef pair<int,int>PII;
typedef pair<double,double>PDD;
#define I_int ll
inline ll read()
{
ll x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=x*10+ch-'0';
ch=getchar();
}
return x*f;
}
#define read read()
#define closeSync ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define multiCase int T;cin>>T;for(int t=1;t<=T;t++)
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i<(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)
#define perr(i,a,b) for(int i=(a);i>(b);i--)
ll ksm(ll a,ll b,ll p)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%p;
a=a*a%p;
b>>=1;
}
return res;
}
#define PI acos(-1)
const double eps=1e-8;
const int maxn=1e6+100;
int a[maxn],n,k,vis[maxn],cnt[maxn];
stack<int>stk;
int main(){
n=read,k=read;
rep(i,1,n){
a[i]=read;
cnt[a[i]]++;
}
rep(i,1,n){
cnt[a[i]]--;
if(vis[a[i]]) continue;
while(!stk.empty()&&cnt[stk.top()]&&stk.top()>a[i]){
vis[stk.top()]=0;
stk.pop();
}
stk.push(a[i]);
vis[a[i]]=1;
}
int idx=0;
while(!stk.empty()){
a[++idx]=stk.top();
stk.pop();
}
for(int i=idx;i;i--){
cout<<a[i]<<" ";
}
return 0;
}