German Collegiate Programming Contest 2019 H . Historical Maths (二分 大数)

在这里插入图片描述
题意:
给出三个数 a , b , c a,b,c a,b,c的每位的数,问在几进制下 a ∗ b = = c a*b==c ab==c
思路:
可以看出是有单调性的,如果进制数较小的话,那么对于相同的乘积来说进位数也多,长度更长。所以如果对于某个进制 a ∗ b < c a*b<c ab<c的话,说明应该增加进位,减少进制数。
由于 d i < = 2 30 d_i<=2^{30} di<=230,所以会爆long long,用高精度模拟又很容易 t l e tle tle,所以应该用 _ _ i n t 128 \_\_int128 __int128
代码:

#include<bits/stdc++.h>
using namespace std;

typedef __int128 ll;

typedef pair<int, int>PII;

inline ll read(){ll x = 0, f = 1;char ch = getchar();while(ch < '0' || ch > '9'){if(ch == '-')f = -1;ch = getchar();}while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}return x * f;}

inline void write(ll x){if (x < 0) x = ~x + 1, putchar('-');if (x > 9) write(x / 10);putchar(x % 10 + '0');}

#define read read()

#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define per(i,a,b) for(int i=(a);i>=(b);i--)

ll ksm(ll a, ll b,ll mod){ll res = 1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}return res;}

const int maxn=2e5+7,inf=0x3f3f3f3f;

ll na,nb,nc,a[1100],b[1100],c[1100];

ll tmpc[2100];

/*
if(sa*sb==sc) return 1;
    else if(sa*sb>sc) return 3;
    return 2;
*/

int check(ll mid){
    ll las=0;
    int flag=1;
    for(int i=0;i<nc;i++){
        ll num=(las+tmpc[i])%mid;
        las=(las+tmpc[i])/mid;
        if(num==c[i]) continue;
        else if(num>c[i]) flag=3;
        else if(num<c[i]) flag=2;
    }
    return flag;
}

int main(){

    ll l=0,r=(1ll<<61),ans=-1;
    na=read;
    for(int i=na-1;i>=0;i--) a[i]=read,l=max(l,a[i]+1);

    nb=read;
    for(int i=nb-1;i>=0;i--) b[i]=read,l=max(l,b[i]+1);

    nc=read;
    for(int i=nc-1;i>=0;i--) c[i]=read,l=max(l,c[i]+1);

    for(int i=0;i<na;i++)
        for(int j=0;j<nb;j++)
            tmpc[i+j]+=(a[i]*b[j]);

    while(l<=r){
        ll mid=(l+r)/2,t=check(mid);
        if(t==1){
            ans=mid;break;
        }
        else if(t==2) r=mid-1;
        else l=mid+1;
     //   cout<<mid<<" "<<t<<endl;
    }
    if(ans==-1) puts("impossible");
    else write(ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值