题意:
在
n
∗
n
∗
n
n*n*n
n∗n∗n的立方体中,有
m
m
m个范围有障碍物,即每个范围里对于满足
x
1
<
=
x
<
=
x
2
,
y
1
<
=
y
<
=
y
2
,
z
1
<
=
z
<
=
z
2
x1<=x<=x2,y1<=y<=y2,z1<=z<=z2
x1<=x<=x2,y1<=y<=y2,z1<=z<=z2的坐标为障碍物。
问从起点到终点的最短距离
思路:
由于坐标系为三维的空间,可以将障碍物标记为
1
1
1,借助三维前缀和计算出每个点能否可以通过。
再用
b
f
s
bfs
bfs求最短距离。
关于三维前缀和的博客:点击跳转
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;typedef unsigned long long ull;
typedef pair<ll,ll>PLL;typedef pair<int,int>PII;typedef pair<double,double>PDD;
#define I_int ll
inline ll read(){ll x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}
#define read read()
#define rep(i, a, b) for(int i=(a);i<=(b);++i)
#define dep(i, a, b) for(int i=(a);i>=(b);--i)
ll ksm(ll a,ll b,ll p){ll res=1;while(b){if(b&1)res=res*a%p;a=a*a%p;b>>=1;}return res;}
const int maxn = 1e5 + 10;
struct node{
int x,y,z;
};
int n,m,b[110][110][110],dis[110][110][110],a[110][110][110];
bool vis[110][110][110];
node S,T;
int nx[]={1,-1,0,0,0,0};
int ny[]={0,0,1,-1,0,0};
int nz[]={0,0,0,0,1,-1};
bool check(int x,int y,int z){
if(x>=1&&x<=n&&y>=1&&y<=n&&z>=1&&z<=n) return 1;
return 0;
}
int bfs(){
memset(dis,0x3f,sizeof dis);
queue<node>q;
q.push(S);dis[S.x][S.y][S.z]=0;
while(!q.empty()){
node t=q.front();q.pop();
int x=t.x,y=t.y,z=t.z;
if(x==T.x&&y==T.y&&z==T.z) return dis[x][y][z];
for(int i=0;i<6;i++){
int xx=x+nx[i],yy=y+ny[i],zz=z+nz[i];
if(check(xx,yy,zz)&&b[xx][yy][zz]==0&&dis[xx][yy][zz]>dis[x][y][z]+1){
dis[xx][yy][zz]=dis[x][y][z]+1;
q.push({xx,yy,zz});
}
}
}
return -1;
}
int main() {
int _=read;
while(_--){
n=read,m=read;
memset(b,0,sizeof b);memset(a,0,sizeof a);
rep(i,1,m){
int x1=read,y1=read,z1=read,x2=read,y2=read,z2=read;
a[x1][y1][z1]--;
a[x1][y1][z2+1]++;
a[x1][y2+1][z1]++;
a[x2+1][y1][z1]++;
a[x1][y2+1][z2+1]--;
a[x2+1][y1][z2+1]--;
a[x2+1][y2+1][z1]--;
a[x2+1][y2+1][z2+1]++;
}
S.x=read,S.y=read,S.z=read;
T.x=read,T.y=read,T.z=read;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++){
b[i][j][k]=a[i][j][k]+b[i-1][j][k]+
b[i][j-1][k]+b[i][j][k-1]-b[i-1][j-1][k]
-b[i-1][j][k-1]-b[i][j-1][k-1]+b[i-1][j-1][k-1];
}
cout<<bfs()<<endl;
}
return 0;
}
/*
*/