2019CCPC厦门站 H. Zayin and Obstacles(三维前缀和 bfs)

本文介绍了一种在n*n*n立方体中寻找从起点到终点的最短路径问题,通过使用三维前缀和技巧高效地判断路径上是否存在障碍物,并结合BFS算法求解。博客详细讲解了如何标记障碍物,构建前缀和数组以及实施广度优先搜索的过程。
摘要由CSDN通过智能技术生成

题意:

n ∗ n ∗ n n*n*n nnn的立方体中,有 m m m个范围有障碍物,即每个范围里对于满足 x 1 < = x < = x 2 , y 1 < = y < = y 2 , z 1 < = z < = z 2 x1<=x<=x2,y1<=y<=y2,z1<=z<=z2 x1<=x<=x2,y1<=y<=y2,z1<=z<=z2的坐标为障碍物。
问从起点到终点的最短距离

思路:

由于坐标系为三维的空间,可以将障碍物标记为 1 1 1,借助三维前缀和计算出每个点能否可以通过。
再用 b f s bfs bfs求最短距离。
关于三维前缀和的博客:点击跳转

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;typedef unsigned long long ull;
typedef pair<ll,ll>PLL;typedef pair<int,int>PII;typedef pair<double,double>PDD;
#define I_int ll
inline ll read(){ll x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}
#define read read()
#define rep(i, a, b) for(int i=(a);i<=(b);++i)
#define dep(i, a, b) for(int i=(a);i>=(b);--i)
ll ksm(ll a,ll b,ll p){ll res=1;while(b){if(b&1)res=res*a%p;a=a*a%p;b>>=1;}return res;}


const int maxn = 1e5 + 10;

struct node{
	int x,y,z;
};
int n,m,b[110][110][110],dis[110][110][110],a[110][110][110];
bool vis[110][110][110];
node S,T;

int nx[]={1,-1,0,0,0,0};
int ny[]={0,0,1,-1,0,0};
int nz[]={0,0,0,0,1,-1};

bool check(int x,int y,int z){
	if(x>=1&&x<=n&&y>=1&&y<=n&&z>=1&&z<=n) return 1;
	return 0;
}

int bfs(){
	memset(dis,0x3f,sizeof dis);
	queue<node>q;
	q.push(S);dis[S.x][S.y][S.z]=0;
	while(!q.empty()){
		node t=q.front();q.pop();
		int x=t.x,y=t.y,z=t.z;
		if(x==T.x&&y==T.y&&z==T.z) return dis[x][y][z];
		for(int i=0;i<6;i++){
			int xx=x+nx[i],yy=y+ny[i],zz=z+nz[i];
			if(check(xx,yy,zz)&&b[xx][yy][zz]==0&&dis[xx][yy][zz]>dis[x][y][z]+1){
				dis[xx][yy][zz]=dis[x][y][z]+1;
				q.push({xx,yy,zz});
			}
		}
	}
	return -1;
}

int main() {
	int _=read;
	while(_--){
		n=read,m=read;
		memset(b,0,sizeof b);memset(a,0,sizeof a);
		rep(i,1,m){
			int x1=read,y1=read,z1=read,x2=read,y2=read,z2=read;	
			a[x1][y1][z1]--;
			a[x1][y1][z2+1]++;
			a[x1][y2+1][z1]++;
			a[x2+1][y1][z1]++;
			
			a[x1][y2+1][z2+1]--;			
			a[x2+1][y1][z2+1]--;
			a[x2+1][y2+1][z1]--;
			a[x2+1][y2+1][z2+1]++;
		}
		S.x=read,S.y=read,S.z=read;
		T.x=read,T.y=read,T.z=read;
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				for(int k=1;k<=n;k++){
					b[i][j][k]=a[i][j][k]+b[i-1][j][k]+
					b[i][j-1][k]+b[i][j][k-1]-b[i-1][j-1][k]
					-b[i-1][j][k-1]-b[i][j-1][k-1]+b[i-1][j-1][k-1];    
				}
		cout<<bfs()<<endl;
	}
	return 0;
}
/*


*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值