2022杭电多校第二场1011 DOS Card(线段树)

题目描述
DOS is a new single-player game that Kayzin came up with. At the beginning of the game you will be given n cards in a row, each with the number of value ai​.

In each “matching” operation you can choose any two cards (we assume that the subscripts of these two cards are i,j(i<j). Notice that i is less than j), and you will get a score of (ai+aj)×(ai−aj).

Kayzin will ask you m times. In the k-th query, you need to select four cards from the cards with subscripts Lk​ to Rk​, and “match” these four cards into two pairs (i.e., two matching operations, but the subscripts of the cards selected in the two matching operations must be different from each other. That is, a card can only be matched at most once. e.g., if you select four tickets with subscripts a, b, c, and d, matching a with b and c with d, or matching a with c and b with d are legal, but matching a with b and b with c is not legal), please calculate the maximum value of the sum of the two matching scores.

Note that the queries are independent of each other.

输入描述
The first line contains an integer T(T≤100) . Then T test cases follow. For one case,

The first line contains two integer n (4≤n≤2×105) and m (1≤m≤105) , n denotes the total number of cards , m denotes the number of times Kayzin queries.

The second line contains n integers a1,a2,…,an (1≤ai≤108), denotes the value of each card.

The next m lines contain Kayzin’s queries. The kth line has two numbers, Lk​ and Rk​ (1≤Lk≤Rk≤n), the input guarantees that Rk−Lk≥3
It is guaranteed that the sum of n over all test cases doesn’t exceed 2×105 and the sum of m over all test cases doesn’t exceed 2×05.

输出描述
Print m integer for each case, indicating the maximum scores that can be obtained by selecting four cards (two matching pairs)

题意:

给出长度为n的序列,m次询问,每次询问给出l,r表示区间范围,在[l,r]里选择四个数,两两配对,计算两对 a i ∗ a i − a j ∗ a j , i < j a_i*a_i-a_j*a_j,i<j aiaiajaj,i<j的最大值

思路:

输入数组的时候就将 a i a_i ai变为 a i ∗ a i a_i*a_i aiai方便后续处理
相当于选出四个数来,每个数对答案的贡献可以为正值也可以为负值
但是因为条件限制还有 i < j i<j i<j,所以只有 + + − − ++-- ++ + − + − +-+- ++两种组合符合题意
区间的最值可以用线段树维护
+ + − − ++-- ++可以划分为 + ∣ + − − , + + ∣ − − , + + − ∣ − +| +--,++|--,++-|- ++,++,++
+ − + − +-+- ++可以划分为 + ∣ − + − , + − ∣ + − , + − + ∣ − +|-+-,+-|+-,+-+|- ++,++,++
然后三个的为 + − − , + + − , − + − , + − + +--,++-,-+-,+-+ +,++,+,++
其中 + − − +-- +可以划分为 + ∣ − − , + − ∣ − +|--,+-|- +,+
其他的依次类推
pushup的时候,由左右子树当前值和组合的值的最大值转移

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn=2e5+7;

struct node{
	int l,r;
	//add +; sub -
	ll aass,asas;//++--,+-+-
	ll a,s;//+ -
	ll aa,as,sa,ss;//++,+-,-+,--
	ll aas,ass,asa,sas; //++-,+--,+-+,-+-
	void init(int ll,int rr){
		ll=l,rr=r;
		aass=asas=a=s=aa=as=sa=ss=aas=ass=asa=sas=-1e18;
	}
}tr[maxn*4];
ll n,m,a[maxn];

void push(node &u,node l,node r){
	u.aass=max(l.aass,r.aass);
	u.asas=max(l.asas,r.asas);
	u.a=max(l.a,r.a);
	u.s=max(l.s,r.s);
	
	u.aa=max(l.aa,r.aa);
	u.as=max(l.as,r.as);
	u.sa=max(l.sa,r.sa);
	u.ss=max(l.ss,r.ss);
	u.aas=max(l.aas,r.aas);
	u.ass=max(l.ass,r.ass);
	u.asa=max(l.asa,r.asa);
	u.sas=max(l.sas,r.sas);
	
	u.aass=max(u.aass,max(l.a+r.ass,max(l.aa+r.ss,l.aas+r.s)));
	u.asas=max(u.asas,max(l.a+r.sas,max(l.as+r.as,l.asa+r.s)));
	
	u.aa=max(u.aa,l.a+r.a);
	u.as=max(u.as,l.a+r.s);
	u.sa=max(u.sa,l.s+r.a);
	u.ss=max(u.ss,l.s+r.s);
	
	u.aas=max(u.aas,max(l.a+r.as,l.aa+r.s));
	u.ass=max(u.ass,max(l.a+r.ss,l.as+r.s));
	u.asa=max(u.asa,max(l.a+r.sa,l.as+r.a));
	u.sas=max(u.sas,max(l.s+r.as,l.sa+r.s));
	
}

void pushup(int u){
	push(tr[u],tr[u<<1],tr[u<<1|1]);
}

void build(int u,int l,int r){
	tr[u].l=l;
	tr[u].r=r;
	tr[u].a=tr[u].aa=tr[u].aas=tr[u].aass=tr[u].as=tr[u].asa=tr[u].asas=tr[u].ass=tr[u].s=tr[u].sa=tr[u].sas=tr[u].ss=-1e18;
	if(l==r){
		tr[u].a=a[l],tr[u].s=-1*a[l];
	}
	else{
		int mid=(l+r)/2;
		build(u<<1,l,mid);build(u<<1|1,mid+1,r);
		pushup(u);
	}
}

node query(int u,int l,int r){
	if(l<=tr[u].l&&r>=tr[u].r) return tr[u];
	else{
		int mid=(tr[u].l+tr[u].r)/2;
		if(r<=mid) return query(u<<1,l,r);
		if(l>mid) return query(u<<1|1,l,r);
		node ans;
		ans.init(0,0);
		push(ans,query(u<<1,l,r),query(u<<1|1,l,r));
		return ans;
	}
}
int main() {
	int _;scanf("%d",&_);
	while(_--){
		scanf("%lld%lld",&n,&m);
		for(int i=1;i<=n;i++){
			scanf("%lld",&a[i]);
			a[i]=a[i]*a[i];
		}
		build(1,1,n);
		while(m--){
			int x,y;
			scanf("%d%d",&x,&y);
			node ans=query(1,x,y);
			printf("%lld\n",max(ans.aass,ans.asas));
		}
	}
	return 0;
}


参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值