大话JDBC(二)

本文详细介绍了如何使用JDBC操作MySQL的BLOB类型数据,包括插入、修改和查询方法。同时,讨论了批量插入的两种高效方式以及数据库事务的概念和JDBC中的事务处理。最后,阐述了数据库连接池的重要性,特别是Druid连接池的特性与优势。
摘要由CSDN通过智能技术生成

目录

前言

1.操作BLOB类型字段

1.1 MySQL BLOB类型

1.2 插入、修改、查询数据表中的Blob类型的数据

2.批量插入

2.1 批量执行SQL语句

2.2 高效的批量插入

3.数据库事务

3.1 数据库事务介绍

3.2 JDBC事务处理

4.数据库连接池

4.1 JDBC数据库连接池的必要性

4.2 数据库连接池技术

4.3 多种开源的数据库连接池

4.3.1 Druid(德鲁伊)数据库连接池


前言

        上一期博客中我们主要讲了JDBC的概述,以及怎么使用JDBC来连接数据库并实现增删改查操作。这期博客我们将继续一起探讨JDBC,这期主要和大家探讨如何使用JDBC更新和查询Blob类型的数据、JDBC中的事务以及数据库连接池等。


1.操作BLOB类型字段

1.1 MySQL BLOB类型

  • MySQL中,BLOB是一个二进制大型对象,是一个可以存储大量数据的容器,它能容纳不同大小的数据。

  • 插入BLOB类型的数据必须使用PreparedStatement,因为BLOB类型的数据无法使用字符串拼接写的。

  • MySQL的四种BLOB类型(除了在存储的最大信息量上不同外,他们是等同的)

  • 实际使用中根据需要存入的数据大小定义不同的BLOB类型。

  • 需要注意的是:如果存储的文件过大,数据库的性能会下降。

  • 如果在指定了相关的Blob类型以后,还报错:xxx too large,那么在mysql的安装目录下,找my.ini文件加上如下的配置参数: max_allowed_packet=16M。同时注意:修改了my.ini文件之后,需要重新启动mysql服务。

1.2 插入、修改、查询数据表中的Blob类型的数据

(一) 向数据表中插入Blob类型的数据

//获取连接
Connection conn = JDBCUtils.getConnection();
		
String sql = "insert into customers(name,email,birth,photo)values(?,?,?,?)";
PreparedStatement ps = conn.prepareStatement(sql);

// 填充占位符
ps.setString(1, "徐海强");
ps.setString(2, "xhq@126.com");
ps.setDate(3, new Date(new java.util.Date().getTime()));
// 操作Blob类型的变量
FileInputStream fis = new FileInputStream("xhq.png");
ps.setBlob(4, fis);
//执行
ps.execute();
		
fis.close();
JDBCUtils.closeResource(conn, ps);

(二)修改数据表中的Blob类型字段

Connection conn = JDBCUtils.getConnection();
String sql = "update customers set photo = ? where id = ?";
PreparedStatement ps = conn.prepareStatement(sql);

// 填充占位符
// 操作Blob类型的变量
FileInputStream fis = new FileInputStream("coffee.png");
ps.setBlob(1, fis);
ps.setInt(2, 25);

ps.execute();

fis.close();
JDBCUtils.closeResource(conn, ps);

(三)从数据表中读取Blob类型的数据

String sql = "SELECT id, name, email, birth, photo FROM customer WHERE id = ?";
conn = getConnection();
ps = conn.prepareStatement(sql);
ps.setInt(1, 8);
rs = ps.executeQuery();
if(rs.next()){
	Integer id = rs.getInt(1);
    String name = rs.getString(2);
	String email = rs.getString(3);
    Date birth = rs.getDate(4);
	Customer cust = new Customer(id, name, email, birth);
    System.out.println(cust); 
    //读取Blob类型的字段
	Blob photo = rs.getBlob(5);
	InputStream is = photo.getBinaryStream();
	OutputStream os = new FileOutputStream("c.jpg");
	byte [] buffer = new byte[1024];
	int len = 0;
	while((len = is.read(buffer)) != -1){
		os.write(buffer, 0, len);
	}
    JDBCUtils.closeResource(conn, ps, rs);
		
	if(is != null){
		is.close();
	}
		
	if(os !=  null){
		os.close();
	}
}

2.批量插入

2.1 批量执行SQL语句

        当需要成批插入或者更新记录时,可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理。通常情况下比单独提交处理更有效率

JDBC的批量处理语句包括下面三个方法:

  • addBatch(String):添加需要批量处理的SQL语句或是参数;

  • executeBatch():执行批量处理语句;

  • clearBatch():清空缓存的数据

通常我们会遇到两种批量执行SQL语句的情况:

  • 多条SQL语句的批量处理;

  • 一个SQL语句的批量传参;

2.2 高效的批量插入

举例:向数据表中插入20000条数据

  • 数据库中提供一个goods表。创建如下:

CREATE TABLE goods(
id INT PRIMARY KEY AUTO_INCREMENT,
NAME VARCHAR(20)
);

        下面我将实现四个层次的批量插入,效率随着层次增加而越来越高。当然推荐大家使用的肯定就是层次四了,效率最高,但一般批量操作的数据不多的话,层次三也够用了。

(一)实现层次一:使用Statement(不推荐)

Connection conn = JDBCUtils.getConnection();
Statement st = conn.createStatement();
for(int i = 1;i <= 20000;i++){
	String sql = "insert into goods(name) values('name_' + "+ i +")";
	st.executeUpdate(sql);
}

(二)实现层次二:使用PreparedStatement

long start = System.currentTimeMillis();
		
Connection conn = JDBCUtils.getConnection();
		
String sql = "insert into goods(name)values(?)";
PreparedStatement ps = conn.prepareStatement(sql);
for(int i = 1;i <= 20000;i++){
	ps.setString(1, "name_" + i);
	ps.executeUpdate();
}
		
long end = System.currentTimeMillis();
System.out.println("花费的时间为:" + (end - start));//82340
		
		
JDBCUtils.closeResource(conn, ps);

(三)实现层次三

/*
 * 修改1: 使用 addBatch() / executeBatch() / clearBatch()
 * 修改2:mysql服务器默认是关闭批处理的,我们需要通过一个参数,让mysql开启批处理的支持。
 * 		 ?rewriteBatchedStatements=true 写在配置文件的url后面
 * 修改3:使用更新的mysql 驱动:mysql-connector-java-5.1.37-bin.jar
 * 
 */
@Test
public void testInsert1() throws Exception{
	long start = System.currentTimeMillis();
		
	Connection conn = JDBCUtils.getConnection();
		
	String sql = "insert into goods(name)values(?)";
	PreparedStatement ps = conn.prepareStatement(sql);
		
	for(int i = 1;i <= 1000000;i++){
		ps.setString(1, "name_" + i);
			
		//1.“攒”sql
		ps.addBatch();
		if(i % 500 == 0){
			//2.执行
			ps.executeBatch();
			//3.清空
			ps.clearBatch();
		}
	}
		
	long end = System.currentTimeMillis();
	System.out.println("花费的时间为:" + (end - start));//20000条:625                                                                         //1000000条:14733  
		
	JDBCUtils.closeResource(conn, ps);
}

(四)实现层次四(推荐)

/*
* 层次四:在层次三的基础上操作
* 使用Connection 的 setAutoCommit(false)  /  commit()
*/
@Test
public void testInsert2() throws Exception{
	long start = System.currentTimeMillis();
		
	Connection conn = JDBCUtils.getConnection();
		
	//1.设置为不自动提交数据
	conn.setAutoCommit(false);
		
	String sql = "insert into goods(name)values(?)";
	PreparedStatement ps = conn.prepareStatement(sql);
		
	for(int i = 1;i <= 1000000;i++){
		ps.setString(1, "name_" + i);
			
		//1.“攒”sql
		ps.addBatch();
			
		if(i % 500 == 0){
			//2.执行
			ps.executeBatch();
			//3.清空
			ps.clearBatch();
		}
	}
		
	//2.提交数据
	conn.commit();
		
	long end = System.currentTimeMillis();
	System.out.println("花费的时间为:" + (end - start));//1000000条:4978 
		
	JDBCUtils.closeResource(conn, ps);
}

3.数据库事务

3.1 数据库事务介绍

  • 事务:一组逻辑操作单元,使数据从一种状态变换到另一种状态。

  • 事务处理(事务操作):保证所有事务都作为一个工作单元来执行,即使出现了故障,都不能改变这种执行方式。当在一个事务中执行多个操作时,要么所有的事务都被提交(commit),那么这些修改就永久地保存下来;要么数据库管理系统将放弃所作的所有修改,整个事务回滚(rollback)到最初状态。

  • 为确保数据库中数据的一致性,数据的操纵应当是离散的成组的逻辑单元:当它全部完成时,数据的一致性可以保持,而当这个单元中的一部分操作失败,整个事务应全部视为错误,所有从起始点以后的操作应全部回退到开始状态。

3.2 JDBC事务处理

  • 数据一旦提交,就不可回滚。

  • 数据什么时候意味着提交?

    • 当一个连接对象被创建时,默认情况下是自动提交事务:每次执行一个 SQL 语句时,如果执行成功,就会向数据库自动提交,而不能回滚。

    • 关闭数据库连接,数据就会自动的提交。如果多个操作,每个操作使用的是自己单独的连接,则无法保证事务。即同一个事务的多个操作必须在同一个连接下。

  • JDBC程序中为了让多个 SQL 语句作为一个事务执行:

    • 调用 Connection 对象的 setAutoCommit(false); 以取消自动提交事务

    • 在所有的 SQL 语句都成功执行后,调用 commit(); 方法提交事务

    • 在出现异常时,调用 rollback(); 方法回滚事务

若此时 Connection 没有被关闭,还可能被重复使用,则需要恢复其自动提交状态 setAutoCommit(true)。尤其是在使用数据库连接池技术时,执行close()方法前,建议恢复自动提交状态。

【案例:用户AA向用户BB转账100】

public void testJDBCTransaction() {
	Connection conn = null;
	try {
		// 1.获取数据库连接
		conn = JDBCUtils.getConnection();
		// 2.开启事务
		conn.setAutoCommit(false);
		// 3.进行数据库操作
		String sql1 = "update user_table set balance = balance - 100 where user = ?";
		update(conn, sql1, "AA");

		// 模拟网络异常
		//System.out.println(10 / 0);

		String sql2 = "update user_table set balance = balance + 100 where user = ?";
		update(conn, sql2, "BB");
		// 4.若没有异常,则提交事务
		conn.commit();
	} catch (Exception e) {
		e.printStackTrace();
		// 5.若有异常,则回滚事务
		try {
			conn.rollback();
		} catch (SQLException e1) {
			e1.printStackTrace();
		}
    } finally {
        try {
			//6.恢复每次DML操作的自动提交功能
			conn.setAutoCommit(true);
		} catch (SQLException e) {
			e.printStackTrace();
		}
        //7.关闭连接
		JDBCUtils.closeResource(conn, null, null); 
    }  
}

其中,对数据库操作的方法为:

//使用事务以后的通用的增删改操作(version 2.0)
public void update(Connection conn ,String sql, Object... args) {
	PreparedStatement ps = null;
	try {
		// 1.获取PreparedStatement的实例 (或:预编译sql语句)
		ps = conn.prepareStatement(sql);
		// 2.填充占位符
		for (int i = 0; i < args.length; i++) {
			ps.setObject(i + 1, args[i]);
		}
		// 3.执行sql语句
		ps.execute();
	} catch (Exception e) {
		e.printStackTrace();
	} finally {
		// 4.关闭资源
		JDBCUtils.closeResource(null, ps);

	}
}

4.数据库连接池

4.1 JDBC数据库连接池的必要性

  • 在使用开发基于数据库的web程序时,传统的模式基本是按以下步骤:  

    • 在主程序(如servlet、beans)中建立数据库连接

    • 进行sql操作

    • 断开数据库连接

  • 这种模式开发,存在的问题:

    • 普通的JDBC数据库连接使用 DriverManager 来获取,每次向数据库建立连接的时候都要将 Connection 加载到内存中,再验证用户名和密码(得花费0.05s~1s的时间)。需要数据库连接的时候,就向数据库要求一个,执行完成后再断开连接。这样的方式将会消耗大量的资源和时间。数据库的连接资源并没有得到很好的重复利用。若同时有几百人甚至几千人在线,频繁的进行数据库连接操作将占用很多的系统资源,严重的甚至会造成服务器的崩溃。

    • 对于每一次数据库连接,使用完后都得断开。否则,如果程序出现异常而未能关闭,将会导致数据库系统中的内存泄漏,最终将导致重启数据库。(回忆:何为Java的内存泄漏?)

    • 这种开发不能控制被创建的连接对象数,系统资源会被毫无顾及的分配出去,如连接过多,也可能导致内存泄漏,服务器崩溃。

4.2 数据库连接池技术

  • 为解决传统开发中的数据库连接问题,可以采用数据库连接池技术。

  • 数据库连接池的基本思想:就是为数据库连接建立一个“缓冲池”。预先在缓冲池中放入一定数量的连接,当需要建立数据库连接时,只需从“缓冲池”中取出一个,使用完毕之后再放回去。

  • 数据库连接池负责分配、管理和释放数据库连接,它允许应用程序重复使用一个现有的数据库连接,而不是重新建立一个

  • 数据库连接池在初始化时将创建一定数量的数据库连接放到连接池中,这些数据库连接的数量是由最小数据库连接数来设定的。无论这些数据库连接是否被使用,连接池都将一直保证至少拥有这么多的连接数量。连接池的最大数据库连接数量限定了这个连接池能占有的最大连接数,当应用程序向连接池请求的连接数超过最大连接数量时,这些请求将被加入到等待队列中。

  • 工作原理:

  • 数据库连接池技术的优点

1. 资源重用

        由于数据库连接得以重用,避免了频繁创建,释放连接引起的大量性能开销。在减少系统消耗的基础上,另一方面也增加了系统运行环境的平稳性。

2. 更快的系统反应速度

        数据库连接池在初始化过程中,往往已经创建了若干数据库连接置于连接池中备用。此时连接的初始化工作均已完成。对于业务请求处理而言,直接利用现有可用连接,避免了数据库连接初始化和释放过程的时间开销,从而减少了系统的响应时间

3. 新的资源分配手段

        对于多应用共享同一数据库的系统而言,可在应用层通过数据库连接池的配置,实现某一应用最大可用数据库连接数的限制,避免某一应用独占所有的数据库资源

4. 统一的连接管理,避免数据库连接泄漏

        在较为完善的数据库连接池实现中,可根据预先的占用超时设定,强制回收被占用连接,从而避免了常规数据库连接操作中可能出现的资源泄露

4.3 多种开源的数据库连接池

  • JDBC 的数据库连接池使用 javax.sql.DataSource 来表示,DataSource 只是一个接口,该接口通常由服务器(Weblogic, WebSphere, Tomcat)提供实现,也有一些开源组织提供实现:

    • DBCP 是Apache提供的数据库连接池。tomcat 服务器自带dbcp数据库连接池。速度相对c3p0较快,但因自身存在BUG,Hibernate3已不再提供支持。

    • C3P0 是一个开源组织提供的一个数据库连接池,速度相对较慢,稳定性还可以。hibernate官方推荐使用

    • Proxool 是sourceforge下的一个开源项目数据库连接池,有监控连接池状态的功能,稳定性较c3p0差一点

    • BoneCP 是一个开源组织提供的数据库连接池,速度快

    • Druid 是阿里提供的数据库连接池,据说是集DBCP 、C3P0 、Proxool 优点于一身的数据库连接池,但是速度不确定是否有BoneCP快

  • DataSource 通常被称为数据源,它包含连接池和连接池管理两个部分,习惯上也经常把 DataSource 称为连接池

  • DataSource用来取代DriverManager来获取Connection,获取速度快,同时可以大幅度提高数据库访问速度。

  • 特别注意:

    • 数据源和数据库连接不同,数据源无需创建多个,它是产生数据库连接的工厂,因此整个应用只需要一个数据源即可。

    • 当数据库访问结束后,程序还是像以前一样关闭数据库连接:conn.close(); 但conn.close()并没有关闭数据库的物理连接,它仅仅把数据库连接释放,归还给了数据库连接池。

4.3.1 Druid(德鲁伊)数据库连接池

        由于Druid是目前最常用的数据库连接池,所以我直接给大家演示Druid,其他连接池就不给大家演示了,感兴趣的小伙伴可以自己下去操作。

        Druid是阿里巴巴开源平台上一个数据库连接池实现,它结合了C3P0、DBCP、Proxool等DB池的优点,同时加入了日志监控,可以很好的监控DB池连接和SQL的执行情况,可以说是针对监控而生的DB连接池,可以说是目前最好的连接池之一。

package com.atguigu.druid;

import java.sql.Connection;
import java.util.Properties;

import javax.sql.DataSource;

import com.alibaba.druid.pool.DruidDataSourceFactory;

public class TestDruid {
	public static void main(String[] args) throws Exception {
		Properties pro = new Properties();		 pro.load(TestDruid.class.getClassLoader().getResourceAsStream("druid.properties"));
		DataSource ds = DruidDataSourceFactory.createDataSource(pro);
		Connection conn = ds.getConnection();
		System.out.println(conn);
	}
}

其中,src下的配置文件为:【druid.properties】

url=jdbc:mysql://localhost:3306/test?rewriteBatchedStatements=true
username=root
password=123456
driverClassName=com.mysql.jdbc.Driver

initialSize=10
maxActive=20
maxWait=1000
filters=wall
  • 常用详细配置参数:
配置缺省说明
name配置这个属性的意义在于,如果存在多个数据源,监控的时候可以通过名字来区分开来。 如果没有配置,将会生成一个名字,格式是:”DataSource-” + System.identityHashCode(this)
url连接数据库的url,不同数据库不一样。例如:mysql : jdbc:mysql://10.20.153.104:3306/druid2 oracle : jdbc:oracle:thin:@10.20.149.85:1521:ocnauto
username连接数据库的用户名
password连接数据库的密码。如果你不希望密码直接写在配置文件中,可以使用ConfigFilter。详细看这里:使用ConfigFilter · alibaba/druid Wiki · GitHub
driverClassName根据url自动识别 这一项可配可不配,如果不配置druid会根据url自动识别dbType,然后选择相应的driverClassName(建议配置下)
initialSize0初始化时建立物理连接的个数。初始化发生在显示调用init方法,或者第一次getConnection时
maxActive8最大连接池数量
maxIdle8已经不再使用,配置了也没效果
minIdle最小连接池数量
maxWait获取连接时最大等待时间,单位毫秒。配置了maxWait之后,缺省启用公平锁,并发效率会有所下降,如果需要可以通过配置useUnfairLock属性为true使用非公平锁。
poolPreparedStatementsfalse是否缓存preparedStatement,也就是PSCache。PSCache对支持游标的数据库性能提升巨大,比如说oracle。在mysql下建议关闭。
maxOpenPreparedStatements-1要启用PSCache,必须配置大于0,当大于0时,poolPreparedStatements自动触发修改为true。在Druid中,不会存在Oracle下PSCache占用内存过多的问题,可以把这个数值配置大一些,比如说100
validationQuery用来检测连接是否有效的sql,要求是一个查询语句。如果validationQuery为null,testOnBorrow、testOnReturn、testWhileIdle都不会其作用。
testOnBorrowtrue申请连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能。
testOnReturnfalse归还连接时执行validationQuery检测连接是否有效,做了这个配置会降低性能
testWhileIdlefalse建议配置为true,不影响性能,并且保证安全性。申请连接的时候检测,如果空闲时间大于timeBetweenEvictionRunsMillis,执行validationQuery检测连接是否有效。
timeBetweenEvictionRunsMillis有两个含义: 1)Destroy线程会检测连接的间隔时间2)testWhileIdle的判断依据,详细看testWhileIdle属性的说明
numTestsPerEvictionRun不再使用,一个DruidDataSource只支持一个EvictionRun
minEvictableIdleTimeMillis
connectionInitSqls物理连接初始化的时候执行的sql
exceptionSorter根据dbType自动识别 当数据库抛出一些不可恢复的异常时,抛弃连接
filters属性类型是字符串,通过别名的方式配置扩展插件,常用的插件有: 监控统计用的filter:stat日志用的filter:log4j防御sql注入的filter:wall
proxyFilters类型是List,如果同时配置了filters和proxyFilters,是组合关系,并非替换关系

ps:博主创作不易,喜欢的小伙伴点个赞吧!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿力觉醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值