二维数组的查找

本文介绍了一种在二维矩阵中查找特定数字的高效算法,该矩阵的每一行和每一列都是按升序排列的。主要讨论了三种解法:第一种为时间复杂度O(m+n)且空间复杂度O(1)的解决方案;第二种为二分查找法;第三种为递归法。通过对比不同解法,读者可以深入理解算法设计思想。
摘要由CSDN通过智能技术生成

解法一:时间复杂度O(m+n) 空间复杂度O(1)

class Solution:
    def findNumberIn2DArray(self, matrix: List[List[int]], target: int) -> bool:
        i,j = len(matrix) - 1,0
        while i >= 0 and j < len(matrix[0]):
            if matrix[i][j] > target:i -= 1
            elif matrix[i][j] < target: j += 1
            else:return True
        return False

解法二:二分查找
解法三:递归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值