算法——第六周作业【动态规划】

本文探讨了动态规划在解决实际问题中的应用,包括投资模型、01背包问题以及公路开店等经典案例。在投资模型中,通过转化问题,将寻找最优策略转化为01背包问题。在01背包问题中,分析了双工程调度和宽度申请的解决方案。对于公路开店问题,展示了如何利用距离型动态规划求解。此外,还涵盖了有无成功情况、0-1背包双限值、矩阵链专题、环形数组归并、多边形的三角形划分、字符串匹配以及图的连通性等多个动态规划相关话题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题一:投资模型

在这里插入图片描述

解答:类似于投资模型
在这里插入图片描述
对于F(2):在这里插入图片描述
在这里插入图片描述
结果为:
在这里插入图片描述

问题二:01背包问题

双工程调度

在这里插入图片描述
首先明确一点。
相当于把这些任务分配给两个进程,耗时长的为最小调度时间
那么两个进程的任务时间总和==T
所以两个进程时间既不可能都大于1/2T,也不可能都小于1/2T.
所以可以想象,必定是一个<1/2T,另一个>1/2T。
那么我想让的就是让>1/2T的尽量小,也就是让<1/2T的尽量大。所以转化为0-1背包问题。我只用考虑一个进程,而不用考虑另一个进程。因为在时间上存在关联关系
即进程满足在<1/2T的时候尽量大max
在这里插入图片描述
递推方程为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值