大数据学习路线总结

本文提供了一条全面的大数据学习路径,从Java基础到Hadoop生态组件的深入,涵盖Linux、Zookeeper、MapReduce、Hive、Hbase、Flume、Presto等,并涉及Spark、Flink、Python数据分析、BI工具使用、Git、求职必备知识等。
摘要由CSDN通过智能技术生成

背景引入

考虑到有对大数据开发感兴趣的同学,因为找资料方向上特别迷茫,不知道大数据具体需要学习什么组件。为了让大家少走弯路,我就把之前的学习笔记发一遍在自己博客,本文就是提供这个博客的链接。可以为大家学习大数据方面以及面试求职有一个很好的认知。

说明:
🌻本文是我的一个学习路线
🌻里面主要是包含大数据开发后端面试(现在大数据是后端这边发展过来的)AI数据分析
🌻数据分析这块,我打算考一个这方面的证书,后面也会更新一部分数据分析的知识点

1 Java学习阶段

⁉️为什么学习大数据也要学Java?
1️⃣Hadoop生态圈底层都是使用Java开发的,如果涉及到源码的修改需要看懂Java
2️⃣Java的生态相比于其他语言(Python、R等)发展比较成熟

第一阶段基础知识

注意:基础知识其实和大学课上讲的Java知识点差不多,但是也有很多对于课堂内容的补充。
☀️Java零基础(一)之Java发展+注释+编译
☀️Java零基础(二)之变量+运算符
☀️Java零基础(三)之运算符+逻辑循环
☀️Java零基础(四)之逻辑循环常用案例
☀️Java零基础(五)之eclipse的安装+方法定义
☀️Java零基础(六)之一维数组
☀️Java零基础(七)之数组排序+二维数组
☀️Java零基础(八)之对象那些事
☀️Java零基础(九)之面向对象三大特性
☀️Java零基础 (十)之多态+抽象类
☀️Java零基础(十一)之static和fianl关键词
☀️Java零基础(十二)之接口+内部类

  • 80
    点赞
  • 805
    收藏
    觉得还不错? 一键收藏
  • 17
    评论
数据分析实习的学习路线可以从以下几个方面入手: 1. 数据分析基础:学习数据分析的基本概念、方法和技术。这包括数据可视化分析、数据挖掘算法、预测性分析能力、语义引擎等方面的知识。可视化分析能够直观地呈现大数据特点,数据挖掘算法能够科学地挖掘数据的特点,预测性分析能够通过建立模型预测未来的数据,语义引擎能够分析用户需求和实现更好的用户体验。 2. 编程语言和工具:学习编程语言和数据分析工具,如Python、R、SQL等。这些工具可以帮助你处理和分析大数据,进行数据清洗、数据处理和数据可视化等操作。 3. 数据结构与算法:学习数据结构和算法的基本知识,这对于进行高效的数据分析和处理非常重要。了解常用的数据结构和算法可以帮助你更好地处理和分析大数据。 4. 数据库知识:学习数据库的基本知识,包括数据库的设计、查询语言和数据管理等方面的知识。数据库是存储和管理大数据的重要工具,掌握数据库知识可以帮助你更好地进行数据分析和处理。 5. 计算机基础知识:学习计算机基础知识,包括操作系统、计算机网络和计算机组成原理等方面的知识。这些知识对于理解和应用数据分析的技术和工具非常重要。 总结来说,数据分析实习的学习路线包括数据分析基础、编程语言和工具、数据结构与算法、数据库知识和计算机基础知识等方面的内容。通过系统学习这些知识,你可以为数据分析实习打下坚实的基础。[1][2][3]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值