题目来源:蓝桥杯算法训练
知识点:二分法,前缀和
问题描述
JiaoShou在爱琳大陆的旅行完毕,即将回家,为了纪念这次旅行,他决定带回一些礼物给好朋友。
在走出了怪物森林以后,JiaoShou看到了排成一排的N个石子。
这些石子很漂亮,JiaoShou决定以此为礼物。
但是这N个石子被施加了一种特殊的魔法。
如果要取走石子,必须按照以下的规则去取。
每次必须取连续的2*K个石子,并且满足前K个石子的重量和小于等于S,后K个石子的重量和小于等于S。
由于时间紧迫,Jiaoshou只能取一次。
现在JiaoShou找到了聪明的你,问他最多可以带走多少个石子。
输入格式
第一行两个整数N、S。
第二行N个整数,用空格隔开,表示每个石子的重量。
输出格式
第一行输出一个数表示JiaoShou最多能取走多少个石子。
样列输入
8 3
1 1 1 1 1 1 1 1
样列输出
6
样列解释
任意选择连续的6个1即可。
数据规模和约定
对于20%的数据:N<=1000
对于70%的数据:N<=100,000
对于100%的数据:N<=1000,000,S<=1012,每个石子的重量小于等于109,且非负
题目分析
这道题非常直接的想法就是使用一个滑动窗口,以固定的步长不断检查符合条件的范围。但是实现了代码之后就会发现,这种方法会有多层循环的嵌套,代码效率很低,也无法AC。
这里参考了这位博主的做法,采用二分法和前缀和来解决。二分法的具体内容不详述,本质就是折半查找。
另外需要注意的是本题涉及数据取值范围,上面给出的参考博客已有说明,注意int
类型的取值与long
类型的取值范围一致。
代码
#include <bits/stdc++.h>
using namespace std;
int n;
long long s;
const int M = 1e6 + 10;
int weight[M];
long long suffix[M];
bool check(int mid) {
for(int i=mid; i<=n-mid; i++) {
if(suffix[i] - suffix[i-mid] <= s && suffix[i+mid] - suffix[i] <= s)
return true;
}
return false;
}
int main() {
cin >> n >> s;
suffix[0] = 0;
for(int i=1; i<=n; i++) {
cin >> weight[i];
suffix[i] = suffix[i-1] + weight[i];
}
int l, r, mid;
l = 1;
r = n;
while(l < r) {
mid = (l + r + 1) >> 1; //(l+r+1)/2
if(check(mid)) l = mid;
else r = mid - 1;
}
cout << 2 * l << endl;
return 0;
}
代码解析
看完代码,有几个点需要弄懂:
- 前缀和
suffix[i]
是从1 ~ i
的所有元素的和。 - 这里的二分查找本质上不断改变了滑动窗口的长度,即
mid
,也可以说是间隔k
。 check()
函数从mid
开始往右查找符合条件的范围,所以如果右边的数不符合,就去左半边查找。mid
是连续的2*K个石子的第k
个,这是计算mid = (l + r + 1) >> 1
的原因。- 最后输出
2 * l
是因为在退出循环前l
获得了符合条件的mid
的值,直接将其乘 2 就是答案。