蓝桥杯——礼物

题目来源:蓝桥杯算法训练
知识点:二分法,前缀和

问题描述
  JiaoShou在爱琳大陆的旅行完毕,即将回家,为了纪念这次旅行,他决定带回一些礼物给好朋友。
  在走出了怪物森林以后,JiaoShou看到了排成一排的N个石子。
  这些石子很漂亮,JiaoShou决定以此为礼物。
  但是这N个石子被施加了一种特殊的魔法。
  如果要取走石子,必须按照以下的规则去取。
  每次必须取连续的2*K个石子,并且满足前K个石子的重量和小于等于S,后K个石子的重量和小于等于S。
  由于时间紧迫,Jiaoshou只能取一次。
  现在JiaoShou找到了聪明的你,问他最多可以带走多少个石子。
  
输入格式
  第一行两个整数N、S。
  第二行N个整数,用空格隔开,表示每个石子的重量。
输出格式
  第一行输出一个数表示JiaoShou最多能取走多少个石子。
  
样列输入
8 3
1 1 1 1 1 1 1 1
样列输出
6
  
样列解释
  任意选择连续的6个1即可。
数据规模和约定
  对于20%的数据:N<=1000
  对于70%的数据:N<=100,000
  对于100%的数据:N<=1000,000,S<=1012,每个石子的重量小于等于109,且非负

题目分析

这道题非常直接的想法就是使用一个滑动窗口,以固定的步长不断检查符合条件的范围。但是实现了代码之后就会发现,这种方法会有多层循环的嵌套,代码效率很低,也无法AC。

这里参考了这位博主的做法,采用二分法前缀和来解决。二分法的具体内容不详述,本质就是折半查找

另外需要注意的是本题涉及数据取值范围,上面给出的参考博客已有说明,注意int类型的取值与long类型的取值范围一致。

代码
#include <bits/stdc++.h>
using namespace std;

int n;
long long s;
const int M = 1e6 + 10;
int weight[M];
long long suffix[M];

bool check(int mid) {
	for(int i=mid; i<=n-mid; i++) {
		if(suffix[i] - suffix[i-mid] <= s && suffix[i+mid] - suffix[i] <= s) 
	 	    return true;
	}
	return false;
}

int main() {
	cin >> n >> s;
	suffix[0] = 0;
	
	for(int i=1; i<=n; i++) {
		cin >> weight[i];
		suffix[i] = suffix[i-1] + weight[i];
	}
	
	int l, r, mid;
	l = 1;
	r = n;
	
	while(l < r) {
		mid = (l + r + 1) >> 1; //(l+r+1)/2
		if(check(mid)) l = mid;
		else r = mid - 1;
	}
	
	cout << 2 * l << endl; 
	
	return 0;
}
代码解析

看完代码,有几个点需要弄懂:

  • 前缀和suffix[i]是从1 ~ i的所有元素的和。
  • 这里的二分查找本质上不断改变了滑动窗口的长度,即mid,也可以说是间隔k
  • check()函数从mid开始往右查找符合条件的范围,所以如果右边的数不符合,就去左半边查找。
  • mid是连续的2*K个石子的第k个,这是计算mid = (l + r + 1) >> 1的原因。
  • 最后输出2 * l是因为在退出循环前l获得了符合条件的mid的值,直接将其乘 2 就是答案。
Java中,带分数可以用分数类来表示。下面是一个简单的带分数类的实现: ```java public class Fraction { private int integer; private int numerator; private int denominator; public Fraction(int integer, int numerator, int denominator) { this.integer = integer; this.numerator = numerator; this.denominator = denominator; simplify(); } private void simplify() { if (numerator < 0 && denominator < 0) { numerator = -numerator; denominator = -denominator; } if (denominator < 0) { numerator = -numerator; denominator = -denominator; } if (integer < 0 && numerator > 0) { numerator = -numerator; } if (integer < 0 && numerator == 0) { integer = -integer; } if (numerator >= denominator) { integer += numerator / denominator; numerator = numerator % denominator; } int gcd = gcd(numerator, denominator); numerator /= gcd; denominator /= gcd; } private int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } public Fraction add(Fraction other) { int newNumerator = this.numerator * other.denominator + other.numerator * this.denominator; int newDenominator = this.denominator * other.denominator; int newInteger = this.integer + other.integer; return new Fraction(newInteger, newNumerator, newDenominator); } public String toString() { if (integer == 0 && numerator == 0) { return "0"; } String result = ""; if (integer != 0) { result += integer; if (numerator != 0) { result += "_"; } } if (numerator != 0) { result += numerator + "/" + denominator; } return result; } } ``` 这个带分数类实现了以下功能: - 构造函数可以根据整数部分、分子和分母创建一个带分数对象。 - simplify() 方法可以将带分数对象化简,如将负号移到分子上、将整数部分和真分数部分合并、将分数化简等。 - add() 方法可以将两个带分数对象相加,返回一个新的带分数对象。 - toString() 方法可以将带分数对象转换为字符串形式。 这个类实现了带分数的加法操作,可以参考这个类来实现其他的运算操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值