Bzoj 2813 奇妙的Fibonacci (线性筛)

题目大意:

题目链接
在这里插入图片描述
(来源)

解题思路:

在做这道题之前,首先要知道 F g c d ( i , j ) = g c d ( F i , F j ) ( j > i )   ( 0 ) F_{gcd(i,j)}=gcd(F_i,F_j)(j>i)~(0) Fgcd(i,j)=gcd(Fi,Fj)(j>i) (0)

证明如下:

先证明 F n = F k ∗ F n − k + 1 + F n − k   ( 1 ) F_n=F_k*F_{n-k+1}+F_{n-k}~(1) Fn=FkFnk+1+Fnk (1)

    F n = F n − 1 + F n − 2 F_n=F_{n-1}+F_{n-2} Fn=Fn1+Fn2(斐波那契数列递推式)

    F n − 1 = F n − 2 + F n − 3 F_{n-1}=F_{n-2}+F_{n-3} Fn1=Fn2+Fn3

    F n − 2 = F n − 3 + F n − 4 F_{n-2}=F_{n-3}+F_{n-4} Fn2=Fn3+Fn4

所以 F n = 3 ∗ F n − 3 + F n − 4 F_n=3*F_{n-3}+F_{n-4} Fn=3Fn3+Fn4

    F n = F 4 ∗ F n − 3 + F n − 4 F_{n}=F_4*F_{n-3}+F_{n-4} Fn=F4Fn3+Fn4

归纳法 F n = F k ∗ F n − k + 1 + F n − k F_n=F_k*F_{n-k+1}+F_{n-k} Fn=FkFnk+1+Fnk

接下来就是利用数学归纳法证明即可

j % i = k j\%i=k j%i=k,所以 j = t i + k j=ti+k j=ti+k

( 1 ) (1) (1) F j = F t i ∗ F j − t i + 1 + F j − t i F_j=F_{ti}*F_{j-ti+1}+F_{j-ti} Fj=FtiFjti+1+Fjti

    F j = F t i ∗ F j − t i + 1 + F k   ( 2 ) F_j=F_{ti}*F_{j-ti+1}+F_{k}~(2) Fj=FtiFjti+1+Fk (2)

 又有 j = t i + k   ( 3 ) j=ti+k ~(3) j=ti+k (3)

可以发现 ( 2 ) ( 3 ) (2)(3) (2)(3)的式子是极其相似的,而这正是 辗转相除法的样子 ,所以只要按照类似的方法递推下去,就能证明 ( 0 ) (0) (0)

所以这道题就可以转换为求给定的每个j的因子 有多少个

d [ i ] d[i] d[i]代表 i i i的约数个数, n u m [ i ] num[i] num[i]代表 i i i的最小质因子个数

f [ i ] f[i] f[i]代表 i i i的约数平方, g [ i ] g[i] g[i]代表 i i i的最小质因子 p   p~ p (最高次数为 k k k)   p 0 + . . . + p 2 k ~p^0+...+p^{2k}  p0+...+p2k的和

因为都是积性函数,所以可以线性筛出来

void init() {
    d[1] = f[1] = g[1] = 1;
    for (ll i = 2; i < maxn; i++) {
        if (!vis[i]) p[++cnt] = i, d[i] = 2, num[i] = 1, f[i] = g[i] = i * i + 1;
        for (ll j = 1; j <= cnt && i * p[j] < maxn; j++) {
            if (i * p[j] >= maxn) break;
            vis[p[j] * i] = true;
            if (i % p[j] == 0) {//p[j]是i的最小质因子,所以p[j]也是i*p[j]的因子
                num[i * p[j]] = (num[i] + 1);//更新num
                d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);//利用num来更新d
                g[i * p[j]] = g[i] * p[j] * p[j] + 1;//更新g
                f[i * p[j]] = f[i] / g[i] * g[i * p[j]];//利用g来更新f
                break;
            }
            else { //i与p[j]互质
                d[i * p[j]] = d[i] * 2;
                num[i * p[j]] = 1;
                f[i * p[j]] = f[i] * f[p[j]];
                g[i * p[j]] = p[j] * p[j] + 1;
            }
        }   
    }
}

到这其实就差不多了,不过最后要注意的一定是
当询问是奇数时,要加上 F 2 F_2 F2的结果

AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll maxn = 1e7 + 1e6;
const ll mod = 1e9 + 7;
bool vis[maxn];
ll d[maxn], num[maxn]; //d[i]代表i的约数个数,num[i]代表i的最小质因子的次方
int cnt;
ll p[maxn], f[maxn], g[maxn];//cnt代表质数的个数,p[]存储质数,f[i]约数的平方和,g[i]代表最小质因子的p^0+...+p^2k和(最高次数为k)
void init() {
    d[1] = f[1] = g[1] = 1;
    for (ll i = 2; i < maxn; i++) {
        if (!vis[i]) p[++cnt] = i, d[i] = 2, num[i] = 1, f[i] = g[i] = i * i + 1;
        for (ll j = 1; j <= cnt && i * p[j] < maxn; j++) {
            if (i * p[j] >= maxn) break;
            vis[p[j] * i] = true;
            if (i % p[j] == 0) {
                num[i * p[j]] = (num[i] + 1);
                d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
                g[i * p[j]] = g[i] * p[j] * p[j] + 1;
                f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
                break;
            }
            else {
                d[i * p[j]] = d[i] * 2;
                num[i * p[j]] = 1;
                f[i * p[j]] = f[i] * f[p[j]];
                g[i * p[j]] = p[j] * p[j] + 1;
            }
        }   
    }
}
ll Q, F, A, B, C;
ll ans1 = 0, ans2 = 0;
int main() {
    init();
    cin >> Q >> F >> A >> B >> C;
    while (Q--) {
        ans1 = (ans1 + d[F]) % mod;
        ans2 = (ans2 + f[F]) % mod;
        F = (F * A % C + B) % C + 1;
        if (F & 1) ans1 = (ans1 + 1) % mod, ans2 = (ans2 + 4) % mod;
    }
    cout << ans1 << endl << ans2 << endl;
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值