大数据培训Spark SQL字段血缘扩展实战案例

一、背景

字段血缘是在表处理的过程中将字段的处理过程保留下来。为什么会需要字段血缘呢?

有了字段间的血缘关系,便可以知道数据的来源去处,以及字段之间的转换关系,这样对数据的质量,治理有很大的帮助。

Spark SQL 相对于 Hive 来说通常情况下效率会比较高,对于运行时间、资源的使用上面等都会有较大的收益。

平台计划将 Hive 任务迁移到 Spark SQL 上,同时也需要实现字段血缘的功能。

二、前期调研

开发前我们做了很多相关调研,从中得知 Spark 是支持扩展的:允许用户对 Spark SQL 的 SQL 解析、逻辑计划的分析和检查、逻辑计划的优化、物理计划的形成等进行扩展。

该方案可行,且对 Spark 的源码没有改动,代价也比较小,确定使用该方案。

三、Spark SQL 扩展

3.1 Spark 可扩展的内容

SparkSessionExtensions是比较重要的一个类,其中定义了注入规则的方法,现在支持以下内容:

  • 【Analyzer Rules】逻辑计划分析规则
  • 【Check Analysis Rules】逻辑计划检查规则
  • 【Optimizer Rules.】 逻辑计划优化规则
  • 【Planning Strategies】形成物理计划的策略
  • 【Customized Parser】自定义的sql解析器
  • 【(External) Catalog listeners catalog】监听器

在以上六种可以用户自定义的地方,我们选择了【Check Analysis Rules】。因为该检查规则在方法调用的时候是不需要有返回值的,也就意味着不需要对当前遍历的逻辑计划树进行修改,这正是我们需要的_大数据培训

而【Analyzer Rules】、【Optimizer Rules】则需要对当前的逻辑计划进行修改,使得我们难以迭代整个树,难以得到我们想要的结果。

3.2 实现自己的扩展

class ExtralSparkExtension extends (SparkSessionExtensions => Unit) {

override def apply(spark: SparkSessionExtensions): Unit = {

//字段血缘

spark.injectCheckRule(FieldLineageCheckRuleV3)

//sql解析器

spark.injectParser { case (_, parser) => new ExtraSparkParser(parser) }

}

}

上面按照这种方式实现扩展,并在 apply 方法中把自己需要的规则注入到 SparkSessionExtensions 即可,除了以上四种可以注入的以外还有其他的规则。要让 ExtralSparkExtension 起到作用的话我们需要在spark-default.conf下配置

spark.sql.extensions=org.apache.spark.sql.hive.ExtralSparkExtension

在启动 Spark 任务的时候即可生效。

注意到我们也实现了一个自定义的SQL解析器,其实该解析器并没有做太多的事情。只是在判断如果该语句包含insert的时候就将 SQLText(SQL语句)设置到一个为FIELD_LINE_AGE_SQL,之所以将SQLText放到FIELD_LINE_AGE_SQL里面。因为在 DheckRule 里面是拿不到SparkPlan的我们需要对SQL再次解析拿到 SprkPlan,而FieldLineageCheckRuleV3的实现也特别简单,重要的在另一个线程实现里面。

这里我们只关注了insert语句,因为插入语句里面有从某些个表里面输入然后写入到某个表。

class ExtraSparkParser(delegate: ParserInterface) extends ParserInterface with Logging{

override def parsePlan(sqlText: String): LogicalPlan = {

val lineAgeEnabled = SparkSession.getActiveSession

.get.conf.getOption("spark.sql.xxx-xxx-xxx.enable").getOrElse("false").toBoolean

logDebug(s"SqlText: $sqlText")

if(sqlText.toLowerCase().contains("insert")){

if(lineAgeEnabled){

if(FIELD_LINE_AGE_SQL_COULD_SET.get()){

//线程本地变量在这里

FIELD_LINE_AGE_SQL.set(sqlText)

}

FIELD_LINE_AGE_SQL_COULD_SET.remove()

}

}

delegate.parsePlan(sqlText)

}

//调用原始的sqlparser

override def parseExpression(sqlText: String): Expression = {

delegate.parseExpression(sqlText)

}

//调用原始的sqlparser

override def parseTableIdentifier(sqlText: String): TableIdentifier = {

delegate.parseTableIdentifier(sqlText)

}

//调用原始的sqlparser

override def parseFunctionIdentifier(sqlText: String): FunctionIdentifier = {

delegate.parseFunctionIdentifier(sqlText)

}

//调用原始的sqlparser

override def parseTableSchema(sqlText: String): StructType = {

delegate.parseTableSchema(sqlText)

}

//调用原始的sqlparser

override def parseDataType(sqlText: String): DataType = {

delegate.parseDataType(sqlText)

}

}

3.3 扩展的规则类

case class FieldLineageCheckRuleV3(sparkSession:SparkSession) extends (LogicalPlan=>Unit ) {

val executor: ThreadPoolExecutor =

ThreadUtils.newDaemonCachedThreadPool("spark-field-line-age-collector",3,6)

override def apply(plan: LogicalPlan): Unit = {

val sql = FIELD_LINE_AGE_SQL.get

FIELD_LINE_AGE_SQL.remove()

if(sql != null){

//这里我们拿到sql然后启动一个线程做剩余的解析任务

val task = new FieldLineageRunnableV3(sparkSession,sql)

executor.execute(task)

}

}

}

很简单,我们只是拿到了 SQL 然后便启动了一个线程去得到 SparkPlan,实际逻辑在

FieldLineageRunnableV3。

3.4 具体的实现方法

3.4.1 得到 SparkPlan

我们在 run 方法中得到 SparkPlan:

override def run(): Unit = {

val parser = sparkSession.sessionState.sqlParser

val analyzer = sparkSession.sessionState.analyzer

val optimizer = sparkSession.sessionState.optimizer

val planner = sparkSession.sessionState.planner

............

val newPlan = parser.parsePlan(sql)

PASS_TABLE_AUTH.set(true)

val analyzedPlan = analyzer.executeAndCheck(newPlan)

val optimizerPlan = optimizer.execute(analyzedPlan)

//得到sparkPlan

val sparkPlan = planner.plan(optimizerPlan).next()

...............

if(targetTable != null){

val levelProject = new ArrayBuffer[ArrayBuffer[NameExpressionHolder]]()

val predicates = new ArrayBuffer[(String,ArrayBuffer[NameExpressionHolder])]()

//projection

projectionLineAge(levelProject, sparkPlan.child)

//predication

predicationLineAge(predicates, sparkPlan.child)

...............

为什么要使用 SparkPlan 呢?当初我们考虑的时候,物理计划拿取字段关系的时候是比较准的,且链路比较短也更直接。

在这里补充一下 Spark SQL 解析的过程如下:

 

经过SqlParser后会得到逻辑计划,此时表名、函数等都没有解析,还不能执行;经过Analyzer会分析一些绑定信息,例如表验证、字段信息、函数信息;经过Optimizer 后逻辑计划会根据既定规则被优化,这里的规则是RBO,当然 Spark 还支持CBO的优化;经过SparkPlanner后就成了可执行的物理计划。

我们看一个逻辑计划与物理计划对比的例子:

一个 SQL 语句:

select item_id,TYPE,v_value,imei from t1

union all

select item_id,TYPE,v_value,imei from t2

union all

select item_id,TYPE,v_value,imei from t3

逻辑计划是这样的:

 

物理计划是这样的:

 

显然简化了很多。

得到 SparkPlan 后,我们就可以根据不同的SparkPlan节点做迭代处理。

我们将字段血缘分为两种类型:projection(select查询字段)、predication(wehre查询条件)。

这两种是一种点对点的关系,即从原始表的字段生成目标表的字段的对应关系。

想象一个查询是一棵树,那么迭代关系会如下从树的顶端开始迭代,直到树的叶子节点,叶子节点即为原始表:

 

那么我们迭代查询的结果应该为

id ->tab1.id ,

name->tab1.name,tabb2.name,

age→tabb2.age。

注意到有该变量

val levelProject = new ArrayBuffer

[ArrayBuffer[NameExpressionHolder]](),通过projecti-onLineAge 迭代后 levelProject 存储了顶层id,name,age对应的(tab1.id),(tab1.name,tabb2.name),(tabb2.age)。

当然也不是简单的递归迭代,还需要考虑特殊情况例如:Join、ExplandExec、Aggregate、Explode、GenerateExec等都需要特殊考虑。

例子及效果:

SQL:

with A as (select id,name,age from tab1 where id > 100 ) ,

C as (select id,name,max(age) from A group by A.id,A.name) ,

B as (select id,name,age from tabb2 where age > 28)

insert into tab3

select C.id,concat(C.name,B.name) as name, B.age from

B,C where C.id = B.id

效果:

{

"edges": [

{

"sources": [

3

],

"targets": [

0

],

"expression": "id",

"edgeType": "PROJECTION"

},

{

"sources": [

4,

7

],

"targets": [

1

],

"expression": "name",

"edgeType": "PROJECTION"

},

{

"sources": [

5

],

"targets": [

2

],

"expression": "age",

"edgeType": "PROJECTION"

},

{

"sources": [

6,

3

],

"targets": [

0,

1,

2

],

"expression": "INNER",

"edgeType": "PREDICATE"

},

{

"sources": [

6,

5

],

"targets": [

0,

1,

2

],

"expression": "((((default.tabb2.`age` IS NOT NULL) AND (CAST(default.tabb2.`age` AS INT) > 28)) AND (B.`id` > 100)) AND (B.`id` IS NOT NULL))",

"edgeType": "PREDICATE"

},

{

"sources": [

3

],

"targets": [

0,

1,

2

],

"expression": "((default.tab1.`id` IS NOT NULL) AND (default.tab1.`id` > 100))",

"edgeType": "PREDICATE"

}

],

"vertices": [

{

"id": 0,

"vertexType": "COLUMN",

"vertexId": "default.tab3.id"

},

{

"id": 1,

"vertexType": "COLUMN",

"vertexId": "default.tab3.name"

},

{

"id": 2,

"vertexType": "COLUMN",

"vertexId": "default.tab3.age"

},

{

"id": 3,

"vertexType": "COLUMN",

"vertexId": "default.tab1.id"

},

{

"id": 4,

"vertexType": "COLUMN",

"vertexId": "default.tab1.name"

},

{

"id": 5,

"vertexType": "COLUMN",

"vertexId": "default.tabb2.age"

},

{

"id": 6,

"vertexType": "COLUMN",

"vertexId": "default.tabb2.id"

},

{

"id": 7,

"vertexType": "COLUMN",

"vertexId": "default.tabb2.name"

}

]

}

四、总结

在 Spark SQL 的字段血缘实现中,我们通过其自扩展,首先拿到了 insert 语句,在我们自己的检查规则中拿到

SQL 语句,通过SparkSqlParser、Analyzer、Optimizer、SparkPlanner,最终得到了物理计划。

我们通过迭代物理计划,根据不同执行计划做对应的转换,然后就得到了字段之间的对应关系。当前的实现是比较简单的,字段之间是直线的对应关系,中间过程被忽略,如果想实现字段的转换的整个过程也是没有问题的。

文章转载来源于数据仓库与Python大数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值