倍增算法入门 超详细解答+LCA+RMQ(ST表)+例题剖析

一、倍增算法

要了解倍增之前,强烈建议大家先看一下这位大佬对倍增的解释:【白话系列】倍增算法
看完以后相信你已经对倍增有了大致初步的了解,下面给出倍增的定义

倍增 从字面的上意思看就是成倍的增长 ,这是指我们在进行递推时,如果状态空间很大,通常的线性递推无法满足时间和空间复杂度的要求 ,那么我们就可以通过成倍的增长,只递推状态空间中在 2 的整数次幂位置上的值作为代表 。当需要其他位置上的值时,我们只需要通过" 任意整数可以表示成若干个2的次幂项的和 " 这一性质( 13 = 2 3 + 2 2 + 2 0 13 = 2^3 + 2^2 +2^0 13=23+22+20 ), 使用之前求出的代表值拼成所需的值。

给定一个长度为 N 的数列 A ,然后进行若干次查询 , 每一次给定一个整数 T , 求出最大的 k , 满足 ∑ 1 = 1 k A [ i ] < = T \sum_{1 = 1 }^{k} A[i] <=T 1=1kA[i]<=T . 算法必须是在线的(每给一次询问,就给出结果) ;

我们当然可以先 预处理前缀和 , ( A [ i ] > 0 A[i] > 0 A[i]>0 )然后用 二分找到 这个k , 这个复杂度最坏是 O ( n ) O(n) O(n) , 因为如果我们的 询问的T 太小 ,就还不如从前往后枚举。
我们可以设计这样一个 倍增算法 :

1 . 令 p = 1 , k = 0 , sum = 0 ;

2 . 比较" A 数组中 k 之后的 p 个数的 和" 与 T 的关系 , 也就是说 ,如果 s u m + s [ k + p ] − s [ k ] < = T sum + s[k+p] - s[k] <=T sum+s[k+p]s[k]<=T , 则令 s u m + = s [ k + p ] − s [ k ] , k + = p , p ∗ = 2 ; sum += s[k+p] -s[k] , k+=p , p*=2 ; sum+=s[k+p]s[k],k+=p,p=2; 也就是累加上这 p 个数的和 ,然后把 p 的跨度增长了一倍。如果 s u m + s [ k + p ] − s [ k ] > T sum+ s[k+p] - s[k] > T sum+s[k+p]s[k]>T , 则令 p / = 2 p /=2 p/=2 .

3 重复上一步,直到 p 的值变为0 , 此时 k 就是 答案 .

注意这里我加了一个特判是因为如果p经过神奇的运算会小于k,那么代码就会直接死循环,不信你把那个特判删了然后试试我编的这组数据:
输入:

5
1 2 3 4 5
10

输出:

4

然后就是代码了(注意这里只是简单的应用帮助理解倍增,并不一定是本题的正确解法)

#include<iostream>
#include<string.h>
#include<cstdio>
#include<math.h>
#include<map>
#define ls (p<<1)
#define rs (p<<1|1)
#define over(i,s,t) for(register long long i=s;i<=t;++i)
#define lver
  • 54
    点赞
  • 177
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
LCA+路径压缩的方式可以用于求解树上的桥,具体实现步骤如下: 1. 对于树上每个节点,记录其在树中的深度(或者高度)以及其父亲节点。 2. 对于每个节点,记录其在树上的最小深度(或最小高度)以及其所在子树中深度最小的节点。 3. 对于每条边(u, v),设u的深度小于v的深度(或者高度),则如果v的子树中没有深度小于u的节点,则(u, v)是桥。 具体的实现过程如下: 首先,我们需要对树进行预处理,求出每个节点的深度以及其父亲节点。可以使用深度优先搜索(DFS)或广度优先搜索(BFS)来实现。在这里我们使用DFS来实现: ```c++ vector<int> adj[MAX_N]; // 树的邻接 int n; // 树的节点数 int dep[MAX_N], fa[MAX_N]; // dep[i]示节点i的深度,fa[i]示节点i的父亲节点 void dfs(int u, int f, int d) { dep[u] = d; fa[u] = f; for (int v : adj[u]) { if (v != f) { dfs(v, u, d + 1); } } } ``` 接下来,我们需要计算每个节点所在子树中深度最小的节点。我们可以使用LCA(最近公共祖先)的方法来实现。具体来说,我们可以使用倍增算法来预处理出每个节点的2^k级祖先,并且在查询LCA时使用路径压缩的方式优化时间复杂度。这里我们不展开讲解LCA倍增算法的细节,如果你对此感兴趣,可以参考其他资料进行学习。 ```c++ const int MAX_LOG_N = 20; // log2(n)的上取整 int anc[MAX_N][MAX_LOG_N]; // anc[i][j]示节点i的2^j级祖先 int mn[MAX_N]; // mn[i]示节点i所在子树中深度最小的节点 void precompute() { // 预处理anc数组 for (int j = 1; j < MAX_LOG_N; j++) { for (int i = 1; i <= n; i++) { if (anc[i][j - 1] != -1) { anc[i][j] = anc[anc[i][j - 1]][j - 1]; } } } // 计算mn数组 for (int i = 1; i <= n; i++) { mn[i] = i; for (int j = 0; (1 << j) <= dep[i]; j++) { if ((dep[i] & (1 << j)) != 0) { mn[i] = min(mn[i], mn[anc[i][j]]); i = anc[i][j]; } } } } ``` 最后,我们可以使用LCA+路径压缩的方式来判断每条边是否为桥。具体来说,对于每条边(u, v),我们需要判断v的子树中是否存在深度小于u的节点。如果存在,则(u, v)不是桥,否则(u, v)是桥。 ```c++ bool is_bridge(int u, int v) { if (dep[u] > dep[v]) swap(u, v); if (mn[v] != u) return true; // 子树中存在深度小于u的节点 return false; // 子树中不存在深度小于u的节点 } ``` 完整代码如下:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值