目录
声明:
本系列博客是《算法竞赛进阶指南》+《算法竞赛入门经典》+《挑战程序设计竞赛》的学习笔记,主要是因为我三本都买了按照《算法竞赛进阶指南》的目录顺序学习,包含书中的少部分重要知识点、例题解题报告及我个人的学习心得和对该算法的补充拓展,仅用于学习交流和复习,无任何商业用途。博客中部分内容来源于书本和网络(我尽量减少书中引用),由我个人整理总结(习题和代码可全都是我自己敲哒)部分内容由我个人编写而成,如果想要有更好的学习体验或者希望学习到更全面的知识,请于京东搜索购买正版图书:《算法竞赛进阶指南》——作者李煜东,强烈安利,好书不火系列,谢谢配合。
下方链接为学习笔记目录链接(中转站)
一、前缀和
给定一个序列,定义 p r e [ i ] = p r e [ i − 1 ] + a [ i ] pre[i]=pre[i-1]+a[i] pre[i]=pre[i−1]+a[i]
可求区间[l,r]的和: p r e [ r ] − p r e [ l − 1 ] pre[r]-pre[l-1] pre[r]−pre[l−1]
可求区间的[l,r]的异或和:(异或的逆运算是它本身)所以即为pre[r]^ pre[l-1]
二、二维前缀和
二维的前缀和根据容斥原理推导得到的
定义: p r e [ i ] [ j ] = p r e [ i − 1 ] [ j ] + p r e [ i ] [ j − 1 ] − p r e [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] , p r e [ i ] [ j ] pre[i][j]=pre[i-1][j]+pre[i][j-1]-pre[i-1][j-1]+a[i][j], pre[i][j] pre[i][j]=pre[i−1][j]+pre[i][j−1]−pre[i−1][j−1]+a[i][j],pre[i][j]表示的是 ( i , j ) (i,j) (i,j)右下角的一个子矩形
1.二维前缀和的修改和求和
如果要使区间 x 1 < = x < = x 2 x_1<=x<=x_2 x1<=x<=x2, y 1 < = y < = y 2 y_1<=y<=y_2 y1<=y<=y2里的数全部+1那么需要进行下面的操作(利用差分思想):
void add(ll x_1,ll y_1,ll x_2,ll y_2)
{
a[x_1][y_1]++;
a[x_2+1][y_2+1]++;
a[x_1][y_2+1]--;
a[x_2+1][y_1]--;
}
注意运用前缀和修改矩阵以后要先求一遍前缀和还原原矩阵,然后再求一遍前缀和才是真正的前缀和,这样才能继续进行下一步的操作
具体实例见下见下面的例题模板:牛妹吃豆子
0. NOI 2003激光炸弹(二维前缀和)
输入样例:
2 1
0 0 1
1 1 1
输出样例:
1
这里用到了二维前缀和。
本题种有几点需要注意:
1.我们把 ( x i , y i ) ( x i , y i ) (xi,yi)(xi,yi) (xi,yi)(x