0x03.基本算法 — 前缀和与差分

这篇博客详细介绍了前缀和与差分的概念及其应用,包括一维和二维前缀和的计算、二维前缀和的修改与求和,以及差分在解决区间加法和序列相同化问题中的作用。文中通过例题解析,如NOI 2003激光炸弹、牛妹吃豆子等,展示了如何利用前缀和和差分优化算法,强调了在使用中需要注意的细节,如求前缀和后还原矩阵的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

声明:
本系列博客是《算法竞赛进阶指南》+《算法竞赛入门经典》+《挑战程序设计竞赛》的学习笔记,主要是因为我三本都买了 按照《算法竞赛进阶指南》的目录顺序学习,包含书中的少部分重要知识点、例题解题报告及我个人的学习心得和对该算法的补充拓展,仅用于学习交流和复习,无任何商业用途。博客中部分内容来源于书本和网络(我尽量减少书中引用),由我个人整理总结(习题和代码可全都是我自己敲哒)部分内容由我个人编写而成,如果想要有更好的学习体验或者希望学习到更全面的知识,请于京东搜索购买正版图书:《算法竞赛进阶指南》——作者李煜东,强烈安利,好书不火系列,谢谢配合。


下方链接为学习笔记目录链接(中转站)

学习笔记目录链接


ACM-ICPC在线模板


一、前缀和

给定一个序列,定义 p r e [ i ] = p r e [ i − 1 ] + a [ i ] pre[i]=pre[i-1]+a[i] pre[i]=pre[i1]+a[i]

可求区间[l,r]的和: p r e [ r ] − p r e [ l − 1 ] pre[r]-pre[l-1] pre[r]pre[l1]

可求区间的[l,r]的异或和:(异或的逆运算是它本身)所以即为pre[r]^ pre[l-1]

二、二维前缀和

二维的前缀和根据容斥原理推导得到的

定义: p r e [ i ] [ j ] = p r e [ i − 1 ] [ j ] + p r e [ i ] [ j − 1 ] − p r e [ i − 1 ] [ j − 1 ] + a [ i ] [ j ] , p r e [ i ] [ j ] pre[i][j]=pre[i-1][j]+pre[i][j-1]-pre[i-1][j-1]+a[i][j], pre[i][j] pre[i][j]=pre[i1][j]+pre[i][j1]pre[i1][j1]+a[i][j]pre[i][j]表示的是 ( i , j ) (i,j) (i,j)右下角的一个子矩形

1.二维前缀和的修改和求和

如果要使区间 x 1 < = x < = x 2 x_1<=x<=x_2 x1<=x<=x2 y 1 < = y < = y 2 y_1<=y<=y_2 y1<=y<=y2里的数全部+1那么需要进行下面的操作(利用差分思想):

void add(ll x_1,ll y_1,ll x_2,ll y_2)
{
   
    a[x_1][y_1]++;
    a[x_2+1][y_2+1]++;
    a[x_1][y_2+1]--;
    a[x_2+1][y_1]--;
}

注意运用前缀和修改矩阵以后要先求一遍前缀和还原原矩阵,然后再求一遍前缀和才是真正的前缀和,这样才能继续进行下一步的操作
具体实例见下见下面的例题模板:牛妹吃豆子

0. NOI 2003激光炸弹(二维前缀和)

在这里插入图片描述

输入样例:

2 1
0 0 1
1 1 1

输出样例:

1

这里用到了二维前缀和。
本题种有几点需要注意:

1.我们把 ( x i , y i ) ( x i , y i ) (xi,yi)(xi,yi) (xi,yi)(x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

繁凡さん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值