1220_最近点对

这篇博客介绍了如何计算平面上给定点集的最近点对距离。通过输入多个测试用例,每个用例包含n个点的坐标,程序运用排序和搜索算法找出最近点对的距离,并确保结果输出至最多6位有效数字。示例输入和输出展示了算法的正确性。
摘要由CSDN通过智能技术生成

Description

对于平面上散布的 n 个点 p1, p2, …, pn, 称 d = min { || pi-pj ||, 1 ≤ i < j ≤ n } 为其最近点对距离.

本题对于给定的 n 个平面点, 请计算其最近点对距离.

Input

有多个测试用例, 每个测试用例由两部分组成. 测试用例的第一部分是一个大于 1 且不超过 10000 的正整数 n, 第二部分是 n 对绝对值不超过 10000 的整数 xi, yi, i=1,2,…,n, 表示平面上的点的横坐标和纵坐标.

输入直至没有数据为止.

Output

对于每个测试用例, 在一行上输出一个最多有 6 个有效数字的实数, 表示给定点集的最近点对距离. 注意: 输出行上不能有前缀和后缀空格.

Sample Input

2
0 0
1 0

Sample Output

1

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cmath>
#define maxn 100100
using namespace std;

struct Point{
	double x,y;
}p[maxn];
int num[maxn];
bool cmpx(Point a,Point b){
	if (a.x == b.x) return a.y < b.y;
	else return a.x < b.x;
}
bool cmpy(int a,int b)//按y递增排序
{
    return p[a].y < p[b].y;
}
double dis(int i,int j){
	return sqrt((p[i].x - p[j].x) * (p[i].x - p[j].x) +
	 (p[i].y - p[j].y) * (p[i].y - p[j].y));
}

double find(int l,int r){
	if (l + 1 == r) return dis(l,r);
	if (l + 2 == r) return min(min(dis(l + 1,r),dis(l,l + 1)),dis(l,r));
	int mid = (l + r) / 2;
	double ans = min(find(l,mid),find(mid + 1,r));
	int cnt = 0;
	for (int i = l; i <= r; i ++){
		if (fabs(p[i].x - p[mid].x) <= ans)
			num[cnt ++] = i;
	}
	sort(num,num+cnt,cmpy);
	for (int i = 0; i < cnt;i ++){
		for (int j = i + 1; j < cnt; j ++){
			if (fabs(p[num[j]].y - p[num[i]].y) > ans) break;
			ans = min(ans,dis(num[i],num[j]));
		}
	}
	return ans;
}

int main()
{
	int n;
	while (~scanf("%d",&n) && n){
		for (int i = 0; i < n; i ++){
			scanf("%lf%lf",&p[i].x,&p[i].y);
		}
		sort(p,p + n,cmpx);
		cout<<find(0,n-1)<<endl;
	}		
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值