【成长记录】二维数组 1~9组成三个3位的平方数

1~9组成三个3位的平方数

讲1、2、3、4、5、6、7、8、9九个数字分成三组,每个数字只能用一次,即每组三个
数不许有重复数字,要求每组中的三位数都组成一个平方数。
**输入格式要求:提示信息:“The 3 squares with 3 different digits each are:\n”
**输出格式要求:"%d,%d,%d\n"
程序运行示例如下:
The 3 squares with 3 different digits each are:
361,529,784

#include<stdio.h>
int fun(int a[], int n)
{
	int i, j;
	for(i = 0; i < n-1; i++)
	for(j = i+1; j < n; j++)
	{
		if(a[i]==a[j]||a[j]==0)//让每两个数都比教一次,如果发现有 
		return 0;			//相同的或某个数值为零则这组数有问题 
	}
	if(i == n-2&&j==n-1)	//当i等于倒数第二个数,j等于最后一个数时 
	{						//说明所有的数都遍历了一遍 
		return 1;
	}
}
main()
{
	int a[9],i,j,k,temp;
	printf("The 3 squares with 3 different digits each are:\n");
	for(i = 13; i <= 31; i++)
	for(j = 13; j <= 31; j++)
	for(k = 13; k <= 31; k++)
	{
		if(i!=j&&i!=k&&j!=k&&i%10!=0&&j%10!=0&&k%10!=0)
		{		//这里避免i,j,k相同,并且去掉20,30 
			temp = i*i;			//设置临时变量将i的值赋给他 
			for(int x = 0; x < 9; x++)	//将各个位数分离出来存储在数组之中 
			{
				a[x] = temp%10;
				temp /= 10; 
				if(temp==0&&x==2)
				temp = j*j;
				if(temp==0&&x==5)
				temp = k*k;
			}
			if(fun(a,9)!=0)//一旦找到立马结束程序 
			{
				printf("%d %d %d\n",i*i,j*j,k*k);
				return 0;
			} 			
		}
	}
}

*问题分析与算法设计
本问题的思路很多,这里介绍一种简单快速的算法。
首先求出三位数中不包含0且是某个整数平方的三位数,这样的三位数是不多的。然后将满足条件的三位数进行组合,使得所选出的3个三位数的9个数字没有重复。
程序中可以将寻找足条件的三位数的过程和对该三位数进行数字分解的过程结合起来。

#include<stdio.h>
int main()
{
    int a[20], num[20][3], b[10]; /*a:存放满足条件的三位数*/
    /*若不是10 的倍数,则分解三位数*/
    /*分解该三位数中的每一个数字*/
    int i, j, k, m, n, t, flag;
    printf("The 3 squares with 3 different digits each are:\n");
    for (j = 0, i = 11; i <= 31; i++) /*求出是平方数的三位数*/
        if (i % 10 != 0) /*若不是10的倍数,则分解三位数*/
        {
            k = i * i; /*分解该三位数中的每一个数字*/
            num[j + 1][0] = k / 100; /*百位*/
            num[j + 1][1] = k / 10 % 10; /*十位*/
            num[j + 1][2] = k % 10; /*个位*/
            if (!(num[j + 1][0] == num[j + 1][1] || num[j + 1][0] == num[j + 1][2] ||
                    num[j + 1][1] == num[j + 1][2])) /*若分解的三位数字均不相等*/
                a[++j] = k; /*j:计数器,统计已找到的满足要求的三位数*/
        }
    for (i = 1; i <= j - 2; ++i) /*从满足条件的三位数中选出三个进行组合*/
    {
        b[1] = num[i][0];
        b[2] = num[i][1];
        b[3] = num[i][2];
        for (t = i + 1; t <= j - 1; ++t)
        {
            b[4] = num[t][0]; /*取第t个数的三位数字*/
            b[5] = num[t][1];
            b[6] = num[t][2];
            for (flag = 0, m = 1; !flag && m <= 3; m++) /*flag:出现数字重复的标记*/
                for (n = 4; !flag && n <= 6; n++) /*判断两个数的数字是否有重复*/
                    if (b[m] == b[n])flag = 1; /*flag=1:数字有重复*/
            if (!flag)
                for (k = t + 1; k <= j; k++)
                {
                    b[7] = num[k][0]; /*取第k个数的三位数字*/
                    b[8] = num[k][1];
                    b[9] = num[k][2];
                    for (flag = 0, m = 1; !flag && m <= 6; m++) /*判断前两个数字是否*/
                        for (n = 7; !flag && n <= 9; n++) /*与第三个数的数字重复*/
                            if (b[m] == b[n])flag = 1;
                    if (!flag) /*若均不重复则打印结果*/
                        printf("%d,%d,%d\n", a[i], a[t], a[k]);
                }
        }
    }
}

#include <stdio.h>

int main()
{
    int a[20], num[20][3], b[10];
    int i, j, k, m, n, t, flag;

    printf("The 3 squares with 3 different digits each are:\n");

    for (j = 0, i =11; i <= 31; i++)
    {
        if (0 != i % 10)
        {
            k = i * i;
            num[j+1][0] = k / 100;
            num[j+1][1] = k / 10 % 10;
            num[j+1][2] = k % 10;

            if (num[j+1][0] != num[j+1][1] &&
               num[j+1][0] != num[j+1][2] &&
               num[j+1][1] != num[j+1][2])
            {
                a[++j] = k; 
            }
        }
    }

    for (i = 1; i <= j-2; i++)
    {
        b[1] = num[i][0];
        b[2] = num[i][1];
        b[3] = num[i][2];

        for (t = i + 1; t <= j-1; t++)
        {
            b[4] = num[t][0];
            b[5] = num[t][1];
            b[6] = num[t][2];

            for (flag = 0, m = 1; !flag && m <= 3; m++)
            {
                for (n = 4; !flag && n <= 6; n++)
                    if (b[m] == b[n])
                        flag = 1;
            }

            if (!flag)
            {
                for (k = t + 1; k <= j; k++)
                {
                    b[7] = num[k][0];
                    b[8] = num[k][1];
                    b[9] = num[k][2];

                for (flag = 0, m = 1; !flag && m <= 6; m++)
                    for (n = 7; !flag && n <= 9; n++)
                        if (b[m] == b[n])
                            flag = 1;

                if (!flag)
                    printf("%d %d %d\n", a[i], a[t], a[k]);
                }
            }
        }
    }   

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值