《填充数据的邻居》——插值

插值是数据分析中的重要手段,用于填补数据空缺。本文介绍了多种插值方法,包括拉格朗日插值、分段线性插值、牛顿插值、埃尔米特插值和样条插值,探讨了它们的理论和实践应用,特别是如何避免高次插值的龙格现象。分段线性插值通过连接相邻节点的直线简化了插值过程,而样条插值提供了一种更平滑的插值方式,尤其适用于保持函数曲线的连续性。
摘要由CSDN通过智能技术生成

插值算法

  • 在进行数据分析时,如果此时已知的数据比较少,那么在对问题进行分析时,难免会分析得不全面,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用

在实际问题中,一个函数 y = f ( x ) \boldsymbol{y=f(x)} y=f(x)往往是通过实验观测得到的,仅已知函数 f ( x ) \boldsymbol{f(x)} f(x)在某区间 [ a , b ] \boldsymbol{\left[ a,b \right]} [a,b]上一系列点上的值 y i = f ( x i ) , i = 0 , 1 , . . . , n \boldsymbol{y_i=f(x_i),i=0,1,...,n} yi=f(xi),i=0,1,...,n
当需要在这些节点   x 0 , x 1 , . . . x n   \boldsymbol{\ x_0,x_1,...x_n\ }  x0,x1,...xn 之间的点上的函数值时,常用较简单的、满足一定条件的函数   φ ( x i )   \boldsymbol{\ \varphi(x_i)\ }  φ(xi) 去代替   f ( x )   \boldsymbol{\ f(x)\ }  f(x) ,插值法是一种常用方法,其插值函数   φ ( x i )   \boldsymbol{\ \varphi(x_i)\ }  φ(xi) 满足条件
  φ ( x i ) = y i , i = 0 , 1 , . . . , n \boldsymbol{\ \varphi(x_i)=y_i,i=0,1,...,n}  φ(xi)=yi,i=0,1,...,n

一般插值多项式

定理

设有n+1个互不相同的节点 ( x i , y i )    ( i = 0 , 1 , 2 , . . . . , n ) \boldsymbol{\left(x_i,y_i\right)\ \ \left( i=0,1,2,....,n\right)} (xi,yi)  (i=0,1,2,....,n),则存在唯一的多项式: L n ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n \boldsymbol{L_n(x)=a_0+a_1x+a_2x^2+...+a_nx_n} Ln(x)=a0+a1x+a2x2+...+anxn使得 L n ( x j ) = y j    ( j = 0 , 1 , 2 , . . . , n ) \boldsymbol{L_n(x_j)=y_j \ \ (j=0,1,2,...,n)} Ln(xj)=yj  (j=0,1,2,...,n)

  • 证明
    { a 0 + a 1 x 0 + a 2 x 0 2 + . . . + a n x 0 n = y 0 a 0 + a 1 x 1 + a 2 x 1 2 + . . . + a n x 1 n = y 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a 0 + a 1 x n + a 2 x n 2 + . . . + a n x n n = y n \boldsymbol{\left\{ \begin{aligned} a_0+a_1x_0+a_2x_0^2+...+a_nx_0^n=y_0 & \\ a_0+a_1x_1+a_2x_1^2+...+a_nx_1^n=y_1 & \\ .....................................................\\ a_0+a_1x_n+a_2x_n^2+...+a_nx_n^n=y_n & \\ \end{aligned} \right.} a0+a1x0+a2x02+...+anx0n=y0a0+a1x1+a2x12+...+anx1n=y1.....................................................a0+a1xn+a2xn2+...+anxnn=yn
    根据线性代数解矩阵方程组的知识
    令 : A = [ 1 x 0 . . . x 0 n 1 x 1 . . . x 1 n . . . . . . . . . . . . 1 x n . . . x n n ] X = [ a 0 a 1 . . . a n ] Y = [ y 0 y 1 . . . y n ] \begin{gathered} 令:A=\begin{bmatrix} 1 & x_0 &...& x_0^n\\ 1 & x_1 &...& x_1^n\\ ... & ...& ... &...\\ 1 & x_n & ... &x_n^n \end{bmatrix} \quad X=\begin{bmatrix} a_0\\ a_1\\ ...\\ a_n \end{bmatrix} \quad Y=\begin{bmatrix} y_0\\ y_1\\ ...\\ y_n \end{bmatrix} \end{gathered} A=11...1x0x1...xn............x0nx1n...xnnX=a0a1...anY=y0y1...yn
    方程组的矩阵形式如下: A X = Y \boldsymbol{AX=Y} AX=Y A \boldsymbol{A}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值