TVM 是一个开源的机器学习编译器堆栈,旨在使得能够对深度学习模型进行优化,以便它们能够在各种硬件平台上高效地运行。它由华盛顿大学的 SAMPL (Systems, Accelerated Machine Learning, and Programming Languages) 实验室领导开发,并且得到了多家公司和社区贡献者的支持。
以下是 TVM 的一些主要特点:
可移植性
- 跨平台支持: TVM 能够为包括 CPU、GPU、FPGA 在内的多种硬件目标生成优化过的代码。
- 灵活的前端: TVM 支持包括 TensorFlow、PyTorch、Keras、MXNet 等在内的多个流行深度学习框架,可以将这些框架训练出的模型转换为 TVM 的中间表示 (IR) 形式。
性能优化
- 自动调度: TVM 通过 AutoTVM 自动优化计算图的部署,寻找最佳的内核函数实现和数据布局。
- 算子融合: 把多个操作合并成一个操作以减少内存访问次数和提高缓存利用率。
- 张量表达式和调度原语: 高级抽象允许用户手动优化特定硬件的低级计算。
端到端工作流
- 模型转换: 将不同框架的预训练模型转换成 TVM IR。
- 优化和编译: 使用图优化和张量表达式来变换和优化 IR,并将其编译为可执行文件。
- 运行时支持: 提供运行时环境,可以在目标设备上加载和执行编译后的模型。
自动化
- AutoTVM: 自动化的内核优化工具,使用机器学习方法寻找最佳的代码配置。
- AutoScheduler(Ansor): 新一代自动调度器,能够生成更加优化的代码。
社区生态
- 扩展性: TVM 设计了易于扩展的接口,以支持新的硬件平台和优化技术。
- 社区驱动: 全球开发者共同参与项目的开发和维护,通过 GitHub 等平台协作。
总之,TVM 是一个强大的工具,专为优化深度学习模型在硬件上的性能而设计,无论是在云端服务器的 GPU 上还是在边缘设备的 CPU 上。通过它的高级优化和自动化功能,开发者可以针对
类似于TVM(Tensor Virtual Machine)专注于优化深度学习模型以便在不同硬件上运行的编译器框架还有:
-
XLA (Accelerated Linear Algebra)
- 描述:XLA是Google为TensorFlow开发的线性代数加速器,它可以将TensorFlow计算图编译成优化后的机器代码,以提高执行效率和减少内存使用。
-
MLIR (Multi-Level Intermediate Representation)
- 描述:MLIR是LLVM项目的一部分,用于构建可重用和可扩展的编译器基础设施。MLIR旨在支持静态也支持动态语言的编译优化,并支持不同级别的抽象。
-
Glow
- 描述:Glow是一个由Facebook开发的机器学习编译器,用于优化神经网络的硬件后端。它降低了将模型部署到不同设备上所需的手动调整量。
-
nGraph
- 描述:nGraph是Intel开发的一个开源C++库,用于神经网络模型的编译和执行优化。nGraph旨在提供灵活性,允许模型跨多种硬件平台进行优化和执行。
-
ONNX Runtime
- 描述:ONNX Runtime是一个针对Open Neural Network Exchange (ONNX)模型的性能优化推理引擎。它支持多种硬件加速器,并能够在不同平台和设备上实现快速推理。
-
PlaidML
- 描述:PlaidML是一个开源张量编译器,它可以针对各种GPU和CPU优化深度学习模型的执行。PlaidML通过其Tile语言来表示复杂的数学运算,并且可以适应不同的硬件特性。
-
NNFusion
- 描述:NNFusion是Microsoft开发的一个AI模型编译器,它可以自动优化并生成针对特定硬件平台的高性能执行代码。NNFusion支持多种框架和硬件后端。
-
Apache TVM
- 描述:虽然与问题中提到的TVM相同,但值得一提的是,TVM是深度学习编译器的先驱之一,其目标是提供一个统一的编译器框架,来支持各种硬件后端(如CPU、GPU、FPGA等),并且它是由社区维护的开源项目。
所有这些工具和框架都有自己特定的特点和优势,选择哪个取决于特定的应用场景、支持的硬件平台、易用性以及社区生态等因素。