树状数组 -- 理解与模板

A:简述

/****************
单点修改,前缀和,区间和

核心:巧妙的运用了类似二分的思想对数组进行了 按位的划分与关联
*****************/

注意二进制表示中的1的位置和包含关系。

最低位的1的位置决定了这个数组下含多少个点(1000 : 包含8个(2^(4-1) );;11100:包含4个(2^(3-1))) (图片来源于网络)

图片来自网络

B:单点修改,建树

******* 注意:不能使用0位置,由于0加0一直0,会死循环。***
********** 建树:初始设为0,每次修改就好了!**********

既然要修改,就要连同修改所有的与之关联的点。
那么,相连同的两个点之间有什么联系呢?
answer: 注意二进制位中最低位的1的位置。

实际上是每次加上二进制位中 2^(1所在的最低位置 - 1)。
比如;修改5(101),那么连同要修改哪些数呢?
5(101) --> 6(110) --> 8(1000) --> 16(10000) (仔细观察最低位1(即加粗的1)的位置,与下方lowbit的值,和图中的包含关系)

那如何快速定位下一个节点呢? lowbit() (二进制位中 2^(1所在的最低位置 - 1))
lowbit(5)=1 (2^0); lowbit(6)=2  (2^1);   lowbit(8)=8  (2^3);
再看 5+lowbit(5)=6 , 6+lowbit(6)=8,8+lowbit(8)=16 ,
5 – 6 – 8 – 16 清晰了许多;

lowbit是如何实现的呢?lowbit(x) --> x&(-x)
为什么这样能实现呢?利用了补码的性质,感兴趣去搜详解,不再展开。

const int maxx=100019;
int c[maxx];
int n;
int lowbit(int x)
{
    return x&(-x); // -x 按位取反操作后+1.(计算机存数是以补码的形式)
}
void update(int i,int vl) // i 位置上 加vl
{ 
    while(i<=n)
    {
      c[i]+=vl;
      i+=lowbit(i);
    }

}

C:查询

那如何求前缀和呢?利用前面所述的结构,利用lowbit(), 可以log(n求出
任意一段[L,R]呢?很简单,[1,R] – [1,L-1] 就是 [L,R]了
sum[R]-sum[L-1]

int get_sum(int i) // 1---i 的和
{
    int ans=0;
    while(i>0)
    {
        ans+=c[i];
        i-=lowbit(i);
    }
     return ans;
}

D:模板题

模板1 (单点修改,区间查询)

题目链接 : Luogu p3374

1 x y 含义:将第 x 个数加上 y

2 x y 含义:输出区间 [x,y] 内每个数的和

模板题,单点修改,区间查询

#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int maxx=500019;
int n,m;
ll c[maxx];
int lowbit(int x)
{
    return x&(-x);
}
void update(int i,ll vl)
{
    while(i<=n)
    {
        c[i]+=vl;
        i+=lowbit(i);
    }

}
ll sum(int i)
{
    ll ans=0;
    while(i>0)
    {
        ans+=c[i];
        i-=lowbit(i);
    }
    return ans;
}
int main()
{

    ll x,y,z;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&x);
        update(i,x);       // 建树
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%lld%lld%lld",&x,&y,&z);
        if(x==1)
        {
            update(y,z);
        }
        else
        {
            printf("%lld\n",sum(z)-sum(y-1)); //查询区间[y,z]
        }
    }

    return 0;
}

模板2 (区间修改,单点查询)

操作 1: 格式:1 x y z     含义:将区间 [x,y] 内每个数加上 z;
操作 2: 格式:2 x          含义:输出第 x 个数的值。

区间加上一个值,自然而然会想到差分。但是如果要查某个值,就需要O(n)的复杂度求个前缀和。这里当然行不通。

那跟树状数组有什么关系呢?
最后的结果是原来的值加上变化的值。我们开个数组,利用差分记录每个位置的变化,那么就需要计算 [ 1 , x ]的前缀和。对,用树状数组维护这个差分数组。log(n) 求出 [ 1,x ]的和,最后加上初始值就好了。

总而言之,树状数组维护的是区间的前缀和,将O(n)的复杂度将为log(n),妙!

#include<bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int maxx=500019;
int n,m;
ll c[maxx],a[maxx];
int lowbit(int x)
{
    return x&(-x);
}
void update(int i,ll vl)
{
    while(i<=n)
    {
        c[i]+=vl;
        i+=lowbit(i);
    }

}
ll sum(int i)
{
    ll ans=0;
    while(i>0)
    {
        ans+=c[i];
        i-=lowbit(i);
    }
    return ans;
}
int main()
{

    ll x,y,z,k;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]); //原始数组的值
    }
    for(int i=1;i<=m;i++)
    {
        scanf("%lld",&x);
        if(x==1)
        {
            scanf("%lld%lld%lld",&y,&z,&k);
            update(y,k);
            update(z+1,-k);  // 差分操作
        }
        else
        {
            scanf("%lld",&y);
            printf("%lld\n",a[y]+sum(y));
        }
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值