GIS基础制图之GPW人口密度栅格图

​本次通过ArcgisPro进行制图,说来说去就是个符号系统的事,多熟悉熟悉。

配套原文链接

GIS基础制图之GPW人口密度栅格图用GPWv4人口密度数据制作人口密度栅格图https://mp.weixin.qq.com/s/i4d2LHogz2HcKnXcuUdcBg

数据:GPW V4人口密度,全国市级行政区划

有数据什么都好说

世界网格人口第4版(GPWv4)是以2000年、2005年国家人口普查和人口登记数据为基础,通过行政单位进行分配的密度估值。其中v4.11版本根据《世界人口展望:2015年》数据进行了修正。数据集为栅格数据,以30弧秒(赤道约1 km)作为整体栅格分辨率。

该数据集单位为人/平方公里,文件类型为GeoTIFF,ASCII(文本)和netCDF格式的全局栅格使用。网站提供了2000年、2005年、2010年、2015年、2020年的数据。ASCII和GeoTIFF数据的原始分辨率为30弧秒和四个较低的分辨率:2.5弧分,15弧分,30弧分和1度,数据存储在WGS84地理坐标系中。

全球的,投影,分级色彩

「按掩膜提取」裁剪出中国区域,通过「符号系统」把人口密度栅格数据按照图中的中断值分类为10类(不一定非是这个中断值,不同分级表现不一样),配色方案随便挑自己觉着好看的,有很多。

将全国市级行政边界矢量数据加载进来后,「符号系统」-「属性」里将所有的省份的背景色改为无填充,灰色轮廓,自己看着顺眼就行。可以将县级行政边界以及一些路网数据加载进来,丰富制图表达。

转到布局视图,ArcgisPro里需要「插入」-「新建布局」-「地图框」选择这样,而不像是map里直接切换,也可以用「导入布局」,里面有既定的模板样式(就在下图标红的右下角看见没),那到这基本上就已经完成了,接下来就是添加标题、指北针、比例尺、图例这些地图要素了。

另外,在布局窗口中,需要激活布局才可自由缩放调整我们地图数据的大小,调整完后关闭激活即可。

菜单都在这里,这倒是跟office似的,还是有点不习惯

最终就如下图啦(传上来经纬网咋就裂了),如果只想要某个区域的可以直接放大到所需要的区域直接出,也可自己裁剪按照步骤来。

添加指北针、比例尺、图例、经纬网,调整一下字体大小

如果我只需要某个区域,只需部分放大单独把边界叠上去

我个人很喜欢地图里面零零碎碎,边边角角的轮廓,看着心里有种微妙的舒服感。

在软件里面,可以通过配色,加载各种底图制作~

数据在公众号 一点规划 获取~欢迎关注

### 人口栅格数据的获取、处理与转换 #### 数据下载 全球人口权重(GPW, Gridded Population of the World)是由CIESIN(哥伦比亚大学地球研究所)发布的一系列高分辨率人口分布数据集。这些数据提供了全球范围内的人口密度估计值,适用于多种研究领域,如环境科学和社会经济分析。可以通过访问官方网站或相关资源平台下载GPWv4版本的人口密度数据[^1]。 #### 数据格式 GPWv4数据通常以GeoTIFF格式提供,这是一种广泛使用的地理空间栅格文件格式。它支持嵌入式的地理参考信息,便于与其他GIS软件兼容并进行进一步的空间分析操作。如果需要其他格式的数据,则可能涉及格式转换过程。 #### 格式转换 当遇到不同需求时,可利用GDAL库或其他GIS工具实现格式间的相互转化。例如,从GeoTIFF转为ASCII Grid或者ESRI Shapefile等常用格式。以下是基于Python和GDAL的一个简单示例脚本用于执行此类任务: ```python from osgeo import gdal def convert_geotiff_to_ascii(input_file, output_file): dataset = gdal.Open(input_file) band = dataset.GetRasterBand(1) array = band.ReadAsArray() driver = gdal.GetDriverByName('AAIGrid') dst_ds = driver.CreateCopy(output_file, dataset, strict=0) convert_geotiff_to_ascii("input.tif", "output.asc") ``` 此代码片段展示了如何将一个GeoTIFF文件转化为ASCII网格文件。 #### 数据配准 对于某些未携带适当投影定义的栅格数据而言,在实际应用前需对其进行地理配准。这一步骤可通过ArcGIS中的地理配准工具完成,具体流程包括加载目标栅格至具有已知坐标系统的底图之上,并通过添加多个精确匹配的地物特征点作为控制点来进行调整校正[^2][^3]。 #### Python爬虫辅助数据收集 除了直接依赖公开数据库外,还可以借助编程手段自动化抓取网络上散布的相关资料。比如构建一个简单的Python程序去搜集特定区域内的城市中心位置及其周边属性详情。这种方法特别适合于那些缺乏现成结构化表格却又有必要快速整理出初步结论的情况之下使用[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值