Modulo Summation——UPC

题目描述

You are given N positive integers a1,a2,…,aN.
For a non-negative integer m, let f(m)=(m mod a1)+(m mod a2)+…+(m mod aN).
Here, X mod Y denotes the remainder of the division of X by Y.
Find the maximum value of f.

Constraints
·All values in input are integers.
·2≤N≤3000
·2≤ai≤105

输入

Input is given from Standard Input in the following format:

N
a1 a2 … aN

输出

Print the maximum value of f.

样例输入

3
3 4 6

样例输出

10

提示

f(11)=(11 mod 3)+(11 mod 4)+(11 mod 6)=10 is the maximum value of f.

#pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math")
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#pragma comment(linker, "/stack:200000000")
#pragma GCC optimize (2)
#pragma G++ optimize (2)
#include <bits/stdc++.h>
#include <algorithm>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <vector>
using namespace std;
#define wuyt main
typedef long long ll;
#define HEAP(...) priority_queue<__VA_ARGS__ >
#define heap(...) priority_queue<__VA_ARGS__,vector<__VA_ARGS__ >,greater<__VA_ARGS__ > >
template<class T> inline T min(T &x,const T &y){return x>y?y:x;}
template<class T> inline T max(T &x,const T &y){return x<y?y:x;}
//#define getchar()(p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
//char buf[(1 << 21) + 1], *p1 = buf, *p2 = buf;
ll read(){ll c = getchar(),Nig = 1,x = 0;while(!isdigit(c) && c!='-')c = getchar();
if(c == '-')Nig = -1,c = getchar();
while(isdigit(c))x = ((x<<1) + (x<<3)) + (c^'0'),c = getchar();
return Nig*x;}
#define read read()
const ll inf = 1e15;
const int maxn = 2e5 + 7;
const int mod = 1e9 + 7;
#define start int wuyt()
#define end return 0
start{
    int n=read;
    int all=-n,temp;
    for(int i=0;i<n;i++)
    {
        temp=read;
        all+=temp;
    }
    cout<<all;
    end;
}
 
/**************************************************************
    Language: C++
    Result: 正确
    Time:1 ms
    Memory:2024 kb
****************************************************************/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值