A - Infinite Fraction Path(bfs+剪枝

该程序涉及一种字符串处理算法,通过优先队列(最小堆)进行优化。核心逻辑在于更新最大值及其位置,并根据字符出现的位置和频率进行处理。算法在每个步骤中寻找当前未处理的最大值,然后更新其相邻位置的值。该算法适用于字符串处理和数组操作相关的复杂问题。
摘要由CSDN通过智能技术生成
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=2e5+10;
char ch[N];int t,n;
int cur[N],vis[N],a[N],d[N];
struct node{
    int val,pos,cur;
};
struct compare
{
    bool operator()(const node &a, const node &b) const
    {
        if (a.cur != b.cur) return a.cur > b.cur;
        else if (a.val != b.val) return a.val < b.val;
        return a.pos > b.pos;
    }
};
priority_queue<node, vector<node>, compare> q;
int main(){
    scanf("%d",&t);
    int cas=0;
    while(t--){
        scanf("%d",&n);scanf("%s",ch);
        int mx=0,sz=strlen(ch);
        for(int i=0;i<sz;i++){
            cur[i]=vis[i]=-1;
            a[i]=ch[i]-'0';
            mx=max(mx,a[i]);
            d[i]=(int)(((ll)i*(ll)i+1)%(ll)sz);
        }
        for(int i=0;i<sz;i++) if(a[i]==mx) q.push({a[i],i,0});
        while(q.size()){
            node tp=q.top();
            q.pop();
            if(cur[tp.cur]==-1) cur[tp.cur]=tp.val;
            if(cur[tp.cur]>tp.val) continue;
            if(vis[tp.pos]<tp.cur) vis[tp.pos]=tp.cur;
            else continue;
            if(tp.cur==sz-1) break;
            q.push({a[d[tp.pos]],d[tp.pos],tp.cur+1});
        }
        while(q.size()) q.pop();
        printf("Case #%d: ",++cas);
        for(int i=0;i<sz;i++)
        printf("%d",cur[i]);
        printf("\n");
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值